3) Der Hirnanhang.

Ein medianer Längsschnitt durch den Kopf eines 6 mm. langen Kaninchenembyros giebt den gewünschten Aufschluss darüber (Taf. IV, Fig. 35). Das Gehirn befindet sich im Zustand der Hakenkrümmung und sind wir über dessen Verhältnisse aus dem ersten Theil dieses Werkes schon orientirt (S. 39); es erübrigt also nur noch die Lagerung des Darmkanales und der Rachenhaut zu besprechen. Der primitive Darm, hier wegen seiner Lage Vorder- oder Kopfdarm genannt, endet derzeit oben unter dem Vorderhirn blind. Seine Begrenzung bilden: hinten der vertebrale Theil der Schädelbasis, vorne die an die Schädelbasis angeheftete Rachenhaut (p.h.g), seitlich die Kieferleisten (Hs). Uber dem blinden Ende des Kopfdarms liegt die bogenförmig gekrummte Wirbelsaite (c.h.d), deren Ende bis an das Epithel der Rachenhautanheftung heranreicht. Die Bekleidung des Darmes besteht überall aus einer Lage kubischer Zellen (von 6 μ Höhe), nur oben in der blinden Kuppe sind diese in zwei bis drei Lagen (0,012 mm.) angehäuft. Die Rachenhaut hat eine Länge von 0,1 mm., ist oben am vordersten Ende der Schädelbasis und unten an den primitiven Brustkorb (Herz) angeheftet; sie besteht aus Elementen aller drei Keimblätter: aussen aus dem vom Stirnvlust herunterziehenden und von der Rachenhaut zum Amnion umgebenden Epiblast, gegen den Darm aus dem Darmdrüsenblatt, zwischen Beiden aus Zellen des Mittelblattes.

Betrachtet man einen ähnlich entwickelten Embryo von vorne 1), so sieht man die

1) S. darüber bei Hs (24) die Fig. 77 (S. 86), wo M (Mundbucht) zugleich die Lagerung und Gestalt der Rachenhaut zeigt.
Rachen haut in einer Vertiefung zwischen dem Stirnwulst und den Kieferleisten gelegen. Diese Vertiefung ist die Anlage der Mundöhle bis zum Isthmus faucium und heisst die primitive Mundbucht. Am obersten Ende der Mundbucht liegt jene eingeknickte Stelle des Epiblasts, welche zur Anlage des Vorderlappens der Hypophyse wird, darum nenne ich diese Stelle den Hypophysenwinkel (Taf. IV, Fig. 35 hph).

Hypophysentasche. Die primitive Mundbucht ist zu dieser Zeit vom Kopfdarm durch die Rachen haut vollkommen getrennt, eine Communication zwischen Beiden besteht nicht. Die Communication wird erst secundär dadurch hergestellt, dass die Rachen haut einreiss. Der Riss ist die Folge jener Dehnung, welche die Rachen haut durch das ruckwärts rückende Herze erleidet. In Folge der Dehnung werden die Zellen des Mittelblattes in der Rachen haut spärlicher, bald ziehen sie sich daraus gänzlich zurück, worauf die beiden Epithellagen einreissen. Der Durchriss erfolgt derartig, dass ein kleiner Stumpf der Rachen haut und damit der beschriebene Hypophysenwinkel an der Schädelbasis erhalten bleiben. Wenn sich dann das secundäre Vorderhirn stärker entwickelt und die Kopfbeuge sich einstellt, wird der praechordale Theil der Schädelbasis dem Stumpe der Rachen haut genähert und es entsteht aus dem Hypophysenwinkel eine quergestellte platte Tasche, welche Hypophysentasche (Schlundtasche Rathke) genannt wird.

Der Durchriss erfolgt bei Kaninchenembryonen dann, wenn sie eine Länge von 6—7 mm. erreicht haben. Bei einem solchen Embryo sind im Uebrigen die Verhältnisse des Gehirns und der Schädelbasis noch dieselben, wie in unserer Fig. 35. Zwischen der Länge von 8—9 mm. erfolgt die Einstellung der Kopfbeuge und damit die Bildung der Hypophysentasche. In Fig. 36 (Taf. IV) ist dieser Prozess eben im Gang. Der Stumpf der durchgerissenen Rachen haut (phg) ist unter dem mittleren Schädelbalken auf den ersten Blick kenntlich. Vor dem Stumpf liegt die noch offene Hypophysentasche (hph), dahinter der Rest des Vorderarmendes. Bei Kaninchenembryonen von 12 mm. Länge (Taf. VI, Fig. 51) ist der Rest des Vorderarmendes ganz ausgeglichen, dagegen die vordere und hintere Wand der Hypophysentasche (hph) einander so sehr genähert, dass dort nur ein schmaler Spalt zwischen Beiden offen blieb, welcher unten in die Mundbucht mündet. Die vordere Wand der Tasche berührt beinahe den Bodentheil des Zwischenhirns und ist davon nur durch eine Lage spärlich verästelter Zellen des Mittelblattes geschieden; nahe an der hinteren Wand endet die Chorda (chd) sanft abgerundet. Querschnitte durch die Tasche zeigen, dass sie eine plattdruckte Gestalt, also eine vordere und hintere Wand hat, dazwischen liegt der quergestellte schmale Spalt. Die Wand der Tasche besteht aus dichtgedrängten spindelförmigen Zellen in mehreren Lagen (bis zu 0,03 mm. Höhe).

Dem Beschriebenem ganz ähnlich ist die Entwicklung der Hypophysenanlage beim Vogelembryo. Beim Hühnchen vom 4. Tag ist die Tasche schon ausgebil det (Taf. IV, Fig. 37 hph), sie ist 0,5 mm. hoch, 0,1 mm. weit, bei ihrer oberen Blindkuppe endet die Chorda (chd) nach einer hakenförmigen Biegung mit einer fein ausgezogenen Spitze.

Aus dem Epithel der Hypophysentasche wird das Epithel der Drüsenschläuche im
Vorderlappen des Hirnanhanges, diese stammen also vom Epiblasten her. Die Bildung der Tasche ist wesentlich eine Folge der Kopfkrümmung, ihre Wand ein eingeknöckter Theil des Epiblasts zwischen Schädelbasis und dem Stumpfe der Rachenhaut.

Trichterfortsatz. Während die Entwicklung des Vorderlappens im Gange ist, kommt mit der Ausbildung der Hypophysentasche auch die Anlage des Hinterlappens zum Vorschein. Diese besteht in einem cylindrischen Hohlfortsatz des Zwischenhirnbodens unmittelbar über und hinter der Hypophysentasche. Der Fortsatz gehört der Trichterregion des Zwischenhirns an und heisst **Trichterfortsatz** (processus infundibuli). Anfangs ist dieser ganz kurz (Taf. VI, Fig. 54 **inf**.) und aus cylindrischen Bildungszeilen bestehend, wie die Gehirnbläschen, dann verlängert sich der Fortsatz zu einer handschuflingerartigen Ausstülpung der Trichterregion (Taf. VI, Fig. 55 **inf**.), welcher an der hinteren Wand der Hypophysentasche hinunterwächst. Der Fortsatz drückt den Mitteltheil der platten Tasche ein, wodurch letztere nach hinten zu concav wird.

Abschnürung der Hypophysentasche. An einem Medianschnitt durch den Kopf eines 16 mm. langen Kaninchenembyros (Taf. VI, Fig. 55) ist der chordale (oep) und der chordalose Theil der Schädelbasis (eth) bedeutend machtiger (bis 0,18 mm.), der mittlere Schädelhalsk gewöhnlich breiter. Beide bestehen aus spindel- und sternförmigen Zellen des Mittelblattes. An der Grenze zwischen chordalem und praechordalem Theil der Schädelbasis liegt vor dem sanft abgerundeten Ende der Wirbelsäule (chd) die in Abschnürung begriffene Hypophysentasche (hp). Der obere Theil der Tasche (0,25 mm. lang, 0,4 mm. weit) ist zwischen den Trichterfortsatz (inf) und dem davor liegenden Theil des Zwischenhirnbodens eingekeilt, und von beiden durch spärliches Bindegewebe getrennt. Vom unteren Ende der Tasche geht ein Epitheleyylinder (0,13 mm. lang, 0,012 mm. weit) zum Epithel des Schlundes hinunter (det), welcher *Hypophysengang* genannt sein mag. Die Wand der Tasche (0,03 mm. dick) hat nach ausser und nach innen scharfe Grenzen und besteht aus mehreren Lagen cylindrischer Epithelzellen, der Hypophysengang aus ganz niederem kubischen Epithelien.

So wurde der untere Theil der Tasche von dem zur starken Entwicklung gekommenen Bindegewebe der Schädelbasis zu einem drüsähnlichen Gang zusammengedrückt. Anfangs ist ein schwaches centrales Lumen im Hypophysengang kenntlich, dann besteht der Gang aus einem soliden Epitheleyylinder und zuletzt geht auch dieser Faden während der Ausbildung der knorpeligen Schädelbasis ganz zu Grunde. Da sich die knorpelige Schädel-

Hypophysenschläuche. Bisher konnte man in der Entwicklung des Vorderlappens der Hypophyse zwei Stadien unterscheiden. Das erste bestand in der Umbildung des Epithels der Mundbucht in die Hypophysentasche, das zweite in deren Abschnürung. Jetzt folgt das dritte Stadium, welches in der Entwicklung von drüsegangähnlichen Schläuchen aus der Taschenwand besteht. Beim Hühnchen wachsen schon während der Abschnürung der Tasche, also gegen den 6.—7. Tag, aus deren beiden Wänden schlauchartige Epithelcylinder (0,02 mm. dick, bis 0,15 mm. lang) in das umliegende gefäßreiche Bindegewebe hinein, die nach der Erreichung einer gewissen Länge durch die umliegenden Gefässe (Aeste der inneren Carotiden) von ihrem Mutterboden losgelöst werden, nach der Loslösung sich in Windungen verlängern und Seitensprossen treiben, welche nachher durch das gefäßreiche Bindegewebe ebenfalls abgeschnürt werden. Das Lumen der Tasche wird während der Abschnürungen allmähig enger, bis es ganz schwindet, resp. die Taschenwand in die Bildung der Schläuche ganz aufgegangen ist. So entstanden aus der Hypophysentasche die Epithelschläuche des Vorderlappens, während dessen gefäßreiches Stroma vom Mittelblatt geliefert wurde.

Bei Säugethieren, von welchen ich Kaninchen- und Bindembryonen auf die Entwicklung der Hypophyse untersuchte, ist die Bildung der Schläuche dieselbe, wie die so eben vom Vogel geschilderte, nur geht die Hypophysentasche einige eigenthümliche Formveränderungen ein, deren Beschreibung wohl der Mühe wert sein wird. Median schnitte durch die Schädelbasis einiger Kaninchenembryonen werden den gewünschten Aufschluss geben.

Bei Kaninchenembryonen von 2 cm. Länge (Taf. VI, Fig. 56) ist der Trichterfortsatz (inf.) etwas länger geworden (0,22 mm. lang, 0,07 mm. breit) und inwendig immer noch mit einem schmalen centralen Lumen versehen. Um den Hohlräum herum liegen cylindrische Zellen, nach aussen von den letzteren eine homogene fein punktierte Masse, in welche von umgebendem Bindegewebe gefäßhaltige Fortsätze hineinziehen. An der Schädelbasis ist die Anlage beider Keilbeinknorpel (eth u. ocp) zur Entwicklung gekommen (Praesphenoid- und Basisphenoidknorpel 1), und sind diese durch die helle Zwischensubstanz, so wie durch das dunkel gefärbte Perichondrium vom umgebenden Bindegewebe scharf markirt. Die zwei

1) Spheno-ethmoideal- und Spheno-occipitalknorpel.
Knorpel liegen einander so nahe, dass sie nur durch einen schmalen Spalt geschieden sind, in welchen der dunne Hypophysengang (0,015 mm. weit) zum Rachenepithel zieht (det). Im Basisphenoidknorpel (ocp) liegt die Chorda mit der hellen Chordascheide (ehd), und erstreckt sich nach einigen Krümmungen bis zum Perichondrium der Sattellhre (eph). Ueber dem Perichondrium der Sattelgrube liegt die Hypophysentasche (h), sie ist in der Mitte halbmondförmig geknickt und entsendet nach vorne gegen das Chiasma einen soliden Fortsatz (pce). Der Fortsatz besteht aus dichtgefügten rundlichen Zellen, während die Wände der Tasche noch immer aus mehreren Lagen cylindrischer Zellen zusammengesetzt sind. Die ganze Tasche sammelt dem Fortsatz ist umgeben von einem dichten gefässreichen Bindegewebe, und es liegen in der durch die Knickung entstandenen Mulde mehrere grosse Gefäss durchschnitte. Vergleicht man diese Abbildung mit Fig. 55 (Taf. VI), so ergibt sich sogleich, dass der Fortsatz aus dem unteren Theil der Hypophysentasche durch eine solide Zellenwucherung entstand. Die Bedeutung des Fortsatzes wird bei einem etwas älteren Kaninchenembryo sogleich klar.

Bei einem 3 cm. langen Kaninchenembryo sieht man an der Schädelbasis folgendes (Taf. VI, Fig. 57): Der mittlere Schädelbalken (pbe) ist bedeutend in Rückbildung begriffen. Darunter liegt der nach hinten gerichtete Trichterfortsatz (inf), der sich nach unten zu etwas erweitert (0,25 mm. lang, 0,08 mm. breit). Sein Lumen ist von schlanken Cylinderrzellen umgeben, mit langen Ausläufern in die fein punktierte Substanz hinein. Basis- und Praesphenoidknorpel sind vereinigt, vom Hypophysengang keine Spur mehr vorhanden. Dagegen ist die Sattelgrube (sel) zu einer vollständigen Entwicklung gekommen und über deren Perichondrium der Durchschnitt zahlreicher Gefässe sichtbar. Im Basisphenoidknorpel endet die Wirbelsäule (ehd) nach einer S-artenigen Biegung fein zugespitzt beim Perichondrium der Sattelgrube, welch letztere vom Vorderlappen der Hypophyse ganz ausgefüllt wird. Die Gestalt der Hypophyse erinnert noch in Vielein an die der Fig. 56, man wird daran die Tasche (h) und den Fortsatz (pce) leicht wiederkennen. Das Abweichende vom früheren besteht darin, dass der Fortsatz und die vordere Taschenwand in gänzlicher Umbildung zu gewundenen drusengangähnlichen Schläuchen geworden sind (von 0,015 mm. Durchmesser), zwischen welchen Bindegewebe mit kleineren und grösseren Gefässen liegt. Diese Abbildung giebt also einen Aufschluss darüber, dass beim Kaninchen nicht von beiden Wänden der Tasche Drüenschläuche hervorwachsen, wie das beim Vogel der Fall ist, sondern nur aus der vorderen Taschenwand und aus einem nach vorne gerichteten soliden Fortsatz. Man kann wohl mit aller Wahrscheinlichkeit annehmen, dass die Bildung der Schläuche vom umgebenden gefässreichen Bindegewebe bewirkt wird, indem Gefässschlingen gegen die Taschenwand vorwachsen und verursachen, dass das Epithel während seiner Vermehrung in drusengangähnlichen Schläuchen hervorwuchern muss.

Die letzten Veränderungen bestehen in der Ausfüllung der Mulde mit Schläuchen und in deren Abschnürung vom Epithel der Taschenwand, ferner in einer innigen Anlage rung des Trichterfortsatzes an die hintere Wand der Hypophyse. Das vollzieht sich während

So ist die Hypophyse der Anatomen aus zwei ganz verschiedenen Anlagen, nämlich vom Epithel der Mundbucht und von einem Fortsatz des Zwischenhirns hervorgegangen. Die zwei in entgegengesetzten Richtungen vorwachsenden Ausstulpungen sind dann mit einander bei höheren Vertebraten in eine so innige Verbindung getreten, dass sie einen compacten Körper bilden. Die Entwicklungsgeschichte liefert aber den Nachweis, dass der Vorderlappen vom hinteren strengen zu scheidet ist, und macht jene seltenen Fälle erklärlich, in welchen der Vorderlappen allein, ohne Zusammenhang mit dem Gehirn gefunden wurde 1).

3) S. darüber die Bemerkung bei W. Müller (39. S. 364), und Mikeljow—Macleay (32. S. 40, Anm.).
cranio-pharyngeus genannt, welcher aus der Sattelgrube zum Period der Gaumenfläche des Wespenbeinkörpers führte, und einen Fortsatz der Dura mater enthielt; der Fortsatz war meist höhl und endete unten blind.

1) Nervenlehre. S. 291.
2) Mihalkovics, Entwicklung des Gehirns.
Ansicht an, so Luschka, Kölliker, Dury, His und W. Müller; c) Reichert war stets ein Gegner dieser Ansicht; früher liess er die Hypophyse aus dem Ende der Chorda, später aus einer Wucherung der Gehirnhäute hervorgehen; d) Die letzte Gruppe enthält jene Autoren, welche die Hypophysentasche von dem Epiblast herleiten. Zuerst ist diese Entwicklungart von Goette aufgestellt, dann von mir, Barfoed und Kölliker bestätigt worden. — Ich werde die erwähnten 4 Ansichten in all der Kürze nach den Gruppen vortragen, um die Wege, welche die Forschung bei einem relativ so unscheinbaren Organ verfolgte, vor Augen zu führen.

a) Die Hypophyse entwickelt sich aus einem Fortsatz des zentralen Nervensystems.

Huschke 1) hält den Trichter für das vorderste Ende des Rückenmarkrohres. Dessen Ende schwillt zur Hypophyse an und neigt sich in einen Vorder- und Hinterlappen, entsprechend dem ventralen und dorsalen Theil des Rückenmarks.

b) Der Vorderlappen der Hypophyse entsteht aus dem Epithel des Kopfdarms.

H. Rathke (44. S. 182) ist es im Jahre 1838 gelungen die Hypophysentasche zu erkennen, darum wird sie auch Rathkesche Schlundtasche genannt. Er leitete die Bildung der Tasche von einer Einstülzung der Mundhöhlenschleimhaut in den Schädelraum hinein her. Die Einstülzung dringt bis zum Trichtervor und vereinigt sich mit ihm zur Hypophyse; dann soll die Mündung der Tasche durch eine von hinten nach vorne zu auswachsende halbmondformige Falte der Rachenschleimhaut verdickt und endlich abgeschnürt werden.

Ich habe mich im Vorangehenden gegen die mechanische Ursache der Trichterbildung ausgesprochen und gesagt (S. 39, Anm. 2), dass der zur Zeit der Hakenkrümmung gebildete Fortsatz gar nicht das Infundibulum, sondern eine Unebenheit des Bodens ist, welche bei der Ausbildung der Kopfbeuge sich ausgleicht, und der eigentliche Trichterfortsatz erst später auswächst. Bezüglich der Schlundtasche aber, — die unserer Ansicht nach freilich nicht vom Darmdrüsen-, sondern vom Hautsinnesblatt geliefert wird, — will ich mich darüber nicht aussprechen, denn man findet das Ende der Chorda in einer nahen Verbindung mit dem Epiblasten an der Anheftungsstelle der Rachenhaut (s. Fig. 33, Taf. IV, und bei Kölliker [27] Fig. 218). Ob aber die anscheinend schwache Chorda wirklich einen derartigen Zug auszüuben vermag, ist damit noch nicht festgestellt.

c) Die Hypophyse entsteht ganz aus Bindegewebsselementen.

Reichert²) hatte sich gleich nach der Entdeckung der Schlundtasche gegen deren Existenz ausgesprochen. Vielmehr solle sich die Chorda bis zum Stirnende des Embryo erstrecken, dann sich von dort zurückziehen und aus dem zurückbleibenden Rest der Hirnanhang werden. Aber auch diese An-

¹) Einen solchen Querast der inneren Carotiden sah ich nur beim Vogel (Huhn), bei Säugethieren aber nicht, — kann ihm also bei der Abschnürung keine weitere Bedeutung zuschreiben (vgl. 36. S. 410).
sicht schien REICHERT später nicht zuzusagen, denn in seinem Werke über das Gehirn (44, S. 19) leugnet er nach Untersuchungen von BIDDER 1) noch immer die Existenz der Schlundtasche und lässt die Hypophyse womöglich aus einer Wucherung der Pia oder der Dura mater entstehen.

Hierher gehört theilweise auch RATHKE, indem er in einem seiner späteren Werke 2) unter Zurücknahme seiner ersten Ansicht die Hypophyse aus dem Bindegewebe der Sattelgrube entstehen liess.

Früher hat auch HIS (20, S. 134), weniger auf Grund eigener Erfahrungen, als aus aprioristischen Folgerungen angegeben, dass die Hypophyse aus dem vordersten Ende des Axenstranges entstehe.

d) Die Hypophysentasche wird vom Epiblasten geliefert.

Alle Autoren, welche die Hypophysentasche aus dem Epithel des Vorderdarmendes herleiteten, hatten darin gefehlt, dass sie den Durchriss der Rachenhaut nicht berücksichtigt und die Tasche hinter die Anheftungsstelle der Rachenhaut verlegten. Dass das nicht so sei, sondern die Hypophysentasche vom Epiblasten herstammt, wurde zuerst von GOETTE bei Batrachiern (1873), dann von mir bei Vögeln und Säugethieren beobachtet (1874). Dieser Ansicht hat sich letzthin BALFOUR nach Untersuchungen an Selachiern (1874) und KÖLLIKER bei höheren Vertebraten angeschlossen (1876).

GOETTE (44, S. 397) lässt das Epithel der Hypophysentasche bei der Unke speziell von seiner Sinnesplatte (dem hufeisenförmigen Saum um die Gehirnplatte herum) herstammen, dessen Mittelteil mit der Hervorwölbung der Geruchsplatte und des Vorderhirns unter das Vorderhirn gelangt, dann in der Gestalt eines scheinbar soliden Zapfens nach rückwärts wächst. In seinem grossen Werke (45, S. 288 u. 347) dehnt G. diese Angabe nach Untersuchungen an Kaninchenembryonen auch auf die Säuge-
thiere aus.

Nach der ersten Mittheilung GOETTE's habe ich die Entwicklung der Hypophysentasche in einer vorläufigen Mittheilung im Centralblatt (34), dann ausführlich im XI. Bd. des Archivs für mikr. Anatomie beschrieben (36), wo auch die Verhältnisse der Hypophysentasche zum Chordänden erörtert sind.

Rückblick.

Die Entwicklung des Vorderlappens ist etwas complicirter, darum kann man zweckmässig bei dessen Ausbildung folgende Stadien unterscheiden: a) die Umbildung des Epithels der Mundbucht zu einer Tasche; b) die Abschürung dieser Tasche vom Epithel der Mundhöhle und c) die Entwicklung von drüenschlauchähnlichen Fortsätzen aus dem Epithel der Taschenwand.

Mit der Ausbildung des Stirnulusgeräth ein Theil des Epiblasten in den Winkel zwischen dem chordalen und prae chordalen Theil der Schädelbasis. Das Epithel dieses Winkels, den wir Hypophysenwinkel nennen können, ist die erste Anlage des Vorderlappens der Hypophyse. Diese stammt also vom Epiblasten her.

1) De crania conformatione etc. Dorpati 1847.
Der Durchriss der Rachenhaut erfolgt dann derartig, dass ein kleiner Stumpf davon und das Epithel des Hypophysenwinkels an der Schädelbasis erhalten bleiben. Wenn sich fernerhin der praeochondralen Theil der Schädelbasis während der Ausbildung der Kopfbeuge jenem Stumpfe nähert, entsteht dort die Hypophysetasche, als eine blinde Aussackung des Epithels der Mundhöhle. Der Rest des blinden Vorderdarmendes liegt stets hinter der Tasche und gleicht sich später durch Ansammlung von Bindegewebe gänzlich aus.

Während der stärkeren Ansammlung von embryonalem Bindegewebe an der Schädelbasis behält die Tasche ihre ursprüngliche nahe Lagerung zum Zwischenhirnboden stets bei, und communicirt eine Zeit lang noch mit der Mundhöhle. Dann wird aber ihr unterer Theil zu einem schmalen Gang comprimirt und zuletzt schwindet auch dieser ganz. Da durch ist das Säckchen vom Epithel der Mundhöhle abgeschnürt und liegt in der Schädelhöhle.

Der Hinterlappen entwickelt sich aus dem Trichterfortsatz. Letzterer ist ein vorge- und stülpfter Theil des Zwischenhirnbodens, welcher bei niederer Wirbelthieren seine nervöse und stülpfter Theil des Zwischenhirnbodens, welche bei niederer Wirbelthieren seine nervöse structur bis in den ausgebildeten Zustand überführt, bei höheren Wirbeltieren aber durch das eingewucherte Pialgewebe zu einem bindegewebigen Anhang des Centralknervensystems wird.

Über die Bedeutung des Hirnanhanges lässt die Entwicklung nur Vermuthungen zu. Es kann als festgestellt angenommen werden, dass die Entwicklung des Vorderlappens durch die Ausbildung des praeochondralen Theiles der Schädelbasis, resp. von der Kopfbeuge bedingt ist, doch giebt diese Ansicht noch keinen Aufschluss über die Bildung der eigenthümlichen Epithelschläuche. Wenn man aber bedenkt, dass das Epithel der Schläuche vom Epiblasten und zwar aus einem solchen Theile des Hautsinnesblattes herstammt, welcher die Epithelien der Drüsen in der Mundhöhle liefert, ferner die embryonalen Verhältnisse des Vorderlappens in Augenschein nimmt, welche einer tubulösen Drüse mit Ausführungsgang so ziemlich gleichkommen, dann kann man sich der Vermuthung nicht enthalten, dass der Vorderlappen bei jenen Ahnen der Vertebraten, bei welchen die Ausbildung der Kopfbeuge eben in der Entwicklung begriffen war (bei den Uebergangsformen vom Amphioxus zu den Myxinoiden), vielleicht eine echte Drüse mit Ausführungsgang war, die dann in Folge der umgeänderten Verhältnisse des Kopfes bei den höheren Repräsentanten jener Uebergangsformen eine allmäßige Abschnürung von der Mundhöhle erlitt, und in Folge dessen eigen-

4) Die Entwicklung der Zirbeldrüse.

Meine Untersuchungen über die Entwicklung der Zirbeldrüse erstrecken sich auf Hühner- und Kaninchenembryonen. Beim Vogel ist die Drüse verhältnissmassig grösser und die Entwicklung leichter zu übersehen, darum will ich diese Wirbeltierklasse als Paradigma hinstellen.

Zirbelfortsatz. Es ist schon bei der Besprechung der Entwicklungsverhältnisse des

2) Diverticulum sup. ventr. III. Gratiolet, Höhle der Zirbeldrüse Luschka, Ventriculus conarii Hyrtl, Recessus pinealis Reichert.