

Aus der Entwicklung lässt sich nichts Bestimmtes über die Bedeutung des Organs entnehmen. Es ist jedenfalls eigenthümlich und wahrscheinlich von mechanischen Einwirkungen bedingt, dass Decke und Boden des Zwischenhirns zu zwei in entgegengesetzten Richtungen vorwachsenden Fortsätzen (proc. pin. und proc. infund.) ausgezogen werden, ferner dass beide Fortsätze bei niederen Wirbeltieren ihre embryonale Form mehr bewahren, als bei höheren. Der Trichterfortsatz wird zu einem bindegewebigen, die Zirbel zu einem epithelialen Anhang des Centralnervensystems, das ist das Ganze, was sich von diesen eigenthümlichen Gebilden sagen lässt.

KAPITEL IX.

Entwicklung des secundären Vorderhirns.

Bedeutend schwieriger sind die Entwicklungsverhältnisse des secundären Vorderhirns der höheren Vertebraten, wo morphologische und histologische Veränderungen in der mannig-
fachsten Art zur Combination kommen. Dadurch erlangt das secundäre Vorderhirn eine vom primitiven Zustand ganz verschiedene Gestalt. Nur durch schrittweise Verfolgung der Uebergangsstadien kann hier dem Verständniss die Einsicht in die definitiven Formen erschlossen werden, und müssen dazu wo möglich zahlreiche Altersstufen zu Rathe gezogen werden.

Um die Uebersicht zu erleichtern, ist es wünschenswerth das ganze Kapitel in Unterabschnitte zu trennen. Mir schien es am zweckmässigsten die Beschreibung folgendermassen einzuteilen:

a) Abtheilung des secundären Vorderhirns in den Stamm- und Manteltheil und Entwicklung der Hemisphärenblasen. — In diesem Abschnitt wird die Theilung des secundären Vorderhirns in den Grund- und Manteltheil, dann die Zweiteilung der gemeinsamen Hemisphärenblase durch die Mantelpalte in die rechte und linke Seitenhälftie beschrieben.

b) Veränderungen an den Hemisphärenblasen während ihrer Ausbreitung über das Zwischenhirn. — Dabei wird auf jene Veränderungen keine Rücksicht genommen, welche an der äusseren Fläche der Hemisphären zum Vorschein kommen, da diese zweckmässiger später besprochen werden können. Vor der Hand sollen blos die Umbildungen an der Hohlenfläche verfolgt werden, als z. B. die Entwicklung der Grosshirnganglien, der Ammonshörner, der seitlichen Adergeflechte und der Seitenventrikel.

c) Entwicklung der Gebilde in der Mantelpalte vor und über der embryonalen Schlusplatte. — Hierher gehört die Entwicklung der durchsichtigen Scheidewand, der vorderen Hirncommissur, des Gewölbes und des Balkens.

d) Die äusseren Formverhältnisse der Grosshirnhemisphären, — als die Entwicklung der Lappen, der Furchen und der Windungen des Grosshirns.

1) Theilung des secundären Vorderhirns in den Bodenteil und in die Hemisphärenblasen.

Mantel- und Stammtheil. Ueber die Entwicklung des secundären Vorderhirnblaschens ist aus dem ersten Theil dieses Werkes (S. 30—34) bekannt: a) dass dieser Gehirntheil aus dem vorderen Ende des primären Vorderhirns durch eine Art Vorwölbung entstand, b) der vorgewölbte Theil durch eine nach unten und vorne zu auslaufende Einschnürung, welche zugleich die Abgrenzung vom Zwischenhirn bewirkte, in einen halbkugelartig vorgewölbten grösseren oberen und in einen schiffbodenartigen kleineren unteren Abschnitt getheilt wurde (Taf. 1, Figg. 2, 3 und 6). Der obere Abschnitt (hms) ist die Anlage jenes Theiles der Grosshirnhemisphären, welcher zum grössten Theile über den Seitenventrikel liegend diese mantelartig zudeckt und darum in der Anatomie Gehirn mantel (pallium cerebri) genannt wird. Im Bodenteil (ggl und bhm) kommt ein Theil der Grosshirnganglien zur Entwicklungs, welche Ganglien später mit dem Mutter- oder sog. Stamma bläschens des secundären
Vorderhirns (dem Zwischenhirn) in eine innige Verbindung treten, darum wird dieser Abschnitt der Boden- oder Stammtheil (Stammlappen Reichen) des secundäre Vorder-
hirns genannt.

Gemeinsame Hemisphärenblase. Der Manteltheil des secundären Vorderhirns um-
schliesst anfangs einen gemeinsamen Hohlraum, der nach unten in weiter Verbindung mit
der Hülle des Stamtheiles und zugleich nach hinten mit jener des Zwischenhirns steht
(Taf. I, Fig. 3 hms). Eine Theilung in eine rechte und linke Hälfte ist nur insofern an-
gedacht, als in der Medianlinie eine schwache Kerbe vorhanden ist (Taf. V, Fig. 4). Vom
Zwischenhirn ist die gemeinsame Hemisphärenblase durch die erwähnte Einschnürung stricte
abgesetzt (Taf. I, Fig. 2 hms), vom Bodentheil (ggl) aber weniger, weil dort die nach
vorne gekrümmte sichelförmige Falte sich verliert. Dadurch gewinnt es den Anschein, als
sei die Hemisphärenblase von oben und hinten abgeschnürt worden, doch entstand diese
Blase nicht durch eine Abschnürung, sondern durch selbständiges Auswachsen und es kam
die abschnürungsfähige Form erst secundär zum Vorschein.

Mantelspalte und embryonale Hirnsichel. Wenn die gemeinsame Hemisphärenblase
eine gewisse Größe erreicht hat, dann vergrössert sie sich nicht mehr in der ursprünglichen
Gestalt und Richtung nach vorne. Durch einen Bindegewebsstrang, der in der Medianlinie
einschneidet, wird sie in eine rechte und linke halbkugelartige Vortreibung abgetheilt (Taf.
I, Fig. 5 und Taf. VI, Fig. 51 hms), und wächst dann ein jeder der Seitentheile haupt-
sächlich in der Richtung nach hinten, das Zwischenhirn bedeckend, aus. Der Einschnitt
heisst Mantelspalte (incisura pallii), die beiden Hälften nennt man Hemisphären-
bläschen (lobi hemisphaericorum, Grosshirnblaschen Reichen) und den median einschneidenden
Bindegewebsstrang primitive Hirnsichel, nur soll wegen letzterer Nomenklatur gleich
hier bemerkt sein, dass der Strang nicht nur die Anlage der Sichel, sondern auch anderer
bindegeweibiger Bildungen in der Mantelspalte ist.

His (20, S. 131 und 24, S. 411) bezeichnet als Ursache der Zweitheilung einen in der Median-
linie wirksamen longitudinalen Zug, der vom Trichterfortsatz, welcher mit der Chorda fest verwachsen
ist, ausgeht. — Dem kann ich mich nicht anschliessen aus dem schon vorgetragenen Grunde (S. 94), weil ich
einen derartigen Zusammenhang nicht gesehen habe. Demnach kann ich die Zweitheilung nur als die
Folge der aktiv einschneidenden Hirnsichel betrachten, in welcher Richtung sich schon früher KöLLiKer
(26, S. 234) ausgesprochen hat. — Schwieriger ist es darüber Aufschluss zu erhalten, was die Veran-
lassung zur Bildung jenes median einschneidenden Bindegewebsfortsatzes sein mag. Richtig ist es, dass
die gemeinsame Hemisphärenblase in der Länge der Schlussshaft gleich von Anfang an dünn ist1) und
dort Gefässe sichtbar sind (Taf. V, Fig. 4). Durch die stärkere Anhäufung des gefäßreichen Binde-
gewebs entsteht dann an jener Stelle die embryonale Hirnsichel. — Die stärkere Ansammlung von Ge-
fässe an dieser, so wie an anderen Stellen ist wahrscheinlich die Folge eigenthümlicher Circulations-
verhältnisse, welche bedingen, dass gewisse Gefässe immer in derselben Richtung angelegt werden.

1) Auch Dury (9, S. 129) bemerkte die Schwäche der Hemisphärenblase in der Medianlinie, und
giebt an, dass dort die Nervensubstanz ganz fehlt und die Verbindung nur durch eine duchsichtige dünne
Membran vermittelt wird. — Unserer Ansicht nach ist hier keine von der übrigen Hirnirone differirende Mem-
bran vorhanden, sondern ist die betreffende Stelle nur etwas dünner als anderwärts.

v. M i h a l k o v i c z, Entwicklung des Gehirns.
Treten Störungen in den Circulationsverhältnissen ein, und kommt es nicht zur Entwicklung von Ge-
fasen in der Medianlinie der gemeinsamen Hemisphärenblase, dann bleibt auch die Bildung der Hirn-
sichel aus, und es entstehen Missbildungen, bei welchen die Grosshirnhemisphären nicht zweigeteilt
sind. So findet man eine gemeinsame Hemisphärenblase bei starkem Hydrocephalus internus, worüber
A. Förster 4) angiebt, in manchen Fällen bilden sie (d. i. die Grosshirnhemisphären) nur eine einfache
Blase und ganz richtig bemerkt, dass das Vorderhirn in solchen Fällen auf einer frühen Stufe der Bil-
dung zurückblieben ist. Gleiches wurde in manchen Fällen der Cyclopie beobachtet, wo die Seiten-
ventrikel einen gemeinsamen Hohlräum umschlossen haben 2). Endlich scheint auch der von Bianchi 7)
beobachtete Fall hieher zu gehören, wo die Hemisphären in der Mittellinie angeblich verschwanden und
die Seitenventrikel in einen gemeinsamen Hohlräum zusammengefassten waren.

Schlussplatte. Sind die Hemisphärenblasen durch die Mantelspalte getrennt, dann
sitzen sie, flachen linienförmigen Hervorragungen ähnlich, dem Stammtheil des secundären
Vorderhirns auf (Taf. I, Fig. 6 h m s). Ihr breiter Wurzelttheil ist vom Stammtheil (b h m)
nicht geschieden und es setzt sich die Wand des Stammtheiles gleichsam direct in die
äussere convexe Wand der Hemisphäre fort. Vom Zwischenhirn aber und von der em-
bryonalen Schlussplatte ist die Hemisphäre durch eine halbmondförmige Einschnürung ab-
gesetzt, welche sich nach vorne zu verliert. Man kann sich das Verhältniss der Hemisphären
zum Zwischenhirn in dieser Zeit am besten so versinnlichen, dass man sich denkt, es wäre
der vordere zugeschürfte Theil des Zwischenhirns zwischen die Hemisphären hineingeschoben
und würde die Decke des Zwischenhirns vorne unmittelbar in die embryonale Schlussplatte
übergehen (Taf. II, Fig. 1 ½ trm). Letzteres ist auch wirklich der Fall, die Schlussplatte
(lamina terminalis) 5) bildet den bogenförmig 6) gekrümmten Verbindungstheil zwischen beiden
Hemisphären in der Tiefe der Mantelspalte, und zieht von der Deckplatte des Zwischenhirns
bis zur Sennervenplatte hinunter (Taf. I, Fig. 8 trm). Darauf ist für das weitere Verständ-
niss der Entwicklungsverhältnisse vor der Schlussplatte eine besondere Rücksicht zu nehmen.

Hemisphärenblasen. Sichelförmige Platte. Wie erwähnt, erscheinen die Hemis-
phären nach ihrer Abschnürung als linienförmige Hohlkörper über dem Stammtheil des
secundären Vorderhirns (Taf. I, Fig. 6 h m s). Dem entsprechend besitzen sie eine innere
(in der Mantelspalte gelegene) und eine äussere Oberfläche und einen Umschlagsrand, den
man zweckmässig Mantelkante nennen kann. Die äussere Oberfläche ist convex und
durch den Wurzelttheil der Hemisphäre ohne besondere Abgrenzung mit dem Stammtheil des
secundären Vorderhirns verbunden; bei der Mantelkante geht die äussere Fläche scharf um-
gebogen in die innere Wand über. Letztere zeigt etwas complicirtere Verhältnisse. Sie hat
die Gestalt einer schmalen sichelförmigen Platte, deren nach unten gerichteter Ausschnitt
den Übergang zum Zwischenhirn und zur embryonalen Schlussplatte vermittelt. Vorne

2) Förster o. c. S. 74.
3) Storica del mostro di due corpor. Turino 1749. p. 100 [citirt nach Kollmann 25. S. 12].
4) Vordere Grenzplatte der 3. Hirnkammer Reichert.
5) An gehören erhärteten Embryonen beschreibt der Schlussplatte immer einen regelmässig gekrümmten
Bogen. Eine derartig scharfe winkelartige Knickung, wie sie Reichert von einem jungen Katzenembryo ange-
giebt (Taf. XI, Fig. 28), sah ich nicht.
steht sie vertical und ist von der ähnlich gestellten Wand der anderen Hemisphäre durch die embryonale Hirnsichel getrennt; ihr hinterer Theil schmiegt sich der convexen Oberfläche des Zwischenhirns an, sie divergiert also mit der gleichen Lamelle der anderen Hemisphäre, und ist etwas concav. REICHERT (44. S. 20) nennt den hinteren, der äusseren Oberfläche des Zwischenhirns angeschmiegt Theil der Hemisphäreninnenwand die sichelförmige Platte, welchen Namen wir beibehalten können; nur muss betont sein, dass die sichelförmige Platte keine selbständige Bildung, sondern nur der hintere, dem Zwischenhirn anliegende Theil der Hemisphäreninnenwand ist. Zwischen der sichelförmigen Platte und der äusseren Wand der Schügelleregion liegt je ein Bindegewebsfortsatz, der die Fortsetzung der embryonalen Hirnsichel nach hinten ist (Taf. VI, Fig. 51 f1x1).

Seitenventrikel. Foramen Monroi primitium. Die Wand der Hemisphärenbläschen unterscheidet sich anfangs in nichts von jener der übrigen Hirnteile, und besteht aus denselben palissadenförmig dichtgedrangten Zellen, wie jene. Die blasenartigen Hemisphären umschließen die Seitenventrikel in der primitivsten Form, welche jetzt noch als divertikelartige Anhänge der Zwischenhirnhöhle erscheinen (Taf. VI, Fig. 51 vtr1). Die Communication geschieht durch das verhältnismässig weite primitive Foramen Monroi (fmp). Die Begrenzung des Locches wird vom halbmondförmigen Ausschnitt der Hemisphäreninnenwand und vom Stammtheil des secundären Vorderhirns gebildet. — Die sich abschnürenden Hemisphären haben in diesem Stadium manche Ähnlichkeit mit den Augenblasen, wenn letztere in Abschnürung begriffen sind (vergl. Taf. V, Fig. 42). Bei dieser Ähnlichkeit ist es auch anzunehmen, dass die mechanischen Momente, welche eine Vorwölbung beider Gebilde nach oben und hinten verursachen, ähnliche sein werden, vielleicht gestattet das über dem Zwischenhirn angesammelte lockere Bindegewebe eine Ausdehnung nach oben und hinten mehr, als nach vorne die enge anliegende Epidermis und das Amnion.

Literaturangaben. Die Bildungsverhältnisse der Hemisphärenblasen sind nur bei REICHERT und Hs. gut angegeben.

Höhlen wahre Divertikel der medianen Vorderhirnhöhle sind. Das Mittelstück reduziert sich später um-
so mehr, je tiefer die Furche einschneidet und um so enger werden die Foramina Monroi. Die Hemisphären
sind also blasenartige Hohlkörper, welche an der Hirnrinde mittelst einer breiten flachen Wurzel festzusetzen.

Sehr eingehend sind die Abschnürungsverhältnisse der Hemisphärenblasen bei REICHERT [41. S. 12 u. 13] besprochen. R. lässt die Hemisphärenblasen gleich anfangs als paarige Ausstülpungen aus dem primären Vorderhirn entstehen, kennt also die vorangehende Form der gemeinsamen Hemisphärenanlage nicht. Demgemäss rechnet er den zwischen den zwei Hemisphärenbläsen liegenden Hirnteil nicht zum
secundären Vorderhirn, sondern zum Zwischenhirn, und spricht sich über dessen Verhältnisse folgender-
massen aus (S. 12): »Die Grosshirnblasen bilden sich im Wesentlichen, wie die Augenblasen, d. h. die seitlichen Erweiterungen an der vorderen und oberen Partie des ersten Hirnblasens nicht zum secundären Vorderhirn, sondern zum Zwischenhirn, und spricht sich über dessen Verhältnisse folgender-
massen aus (S. 12): »Die Grosshirnblasen bilden sich im Wesentlichen, wie die Augenblasen, d. h. die seitlichen Erweiterungen an der vorderen und oberen Partie des ersten Hirnblasens nicht von dem letztener unter der Form eines Abschnürungsprozesses ab.« Es bleibt also gleich anfangs an der betreffenden Stelle eine mittlere, am Abschnürungsprozess unbetheiligte Partie des ersten Hirnblasens zurück, die sich keilförmig zwischen die Grosshirnblasen hineinschlichts.« Ferner (S. 13): »Die Abschnürungsfläche der Grosshirnblasen von ihrem Stammblasen bildet ungefähr einen Kreis oder eine breite Ellipse, deren Längsdurchmesser von vorne und innen (mittellinie) nach hinten und aussen gerichtet ist. Das Bild eines Abschnürungsprozesses gewähren übrigens die hervorwachsenden Gross-
hirnblasen vorzugsweise an der Decke des Stammblasens, also am dorsalen, oberen Bogen der Ab-
schnürungsfläche, da hier die Ausdehnung der bezeichneten Anlagen über das Niveau des Stammblasens besonders vorherrsch. Der Boden des ersten Hirnblasens dagegen verliert sich an der entsprechenden Stelle fast unmerklich in die Seitenwände des Grosshirnblasens.«

Diese Beschreibung passt für die obwaltenden Verhältnisse ganz genau, nur ist die Deutung
jenes Mittelstückes zwischen beiden Grosshirnblasen, als zum Zwischenhirn gehört, nicht zutreffend. Dieser Theil gehört ganz dem secundären Vorderhirn an, es ist die am Abschnürungsprozess nicht be-
theiligte Mittelpartie des secundären Vorderhirns, welche nach hinten mit der Höhle des Zwischenhirns in weiter Verbindung steht, woher der Anschein kommt, als würde sie letztem angehören. Der Irrthum ist aber leicht begreiflich, denn später, mit der relativen Verkleinerung des Monro'schen Loches
rückt die Schlussplatte allmässig bis zur vorderen Grenze des Zwischenhirns heran und es wird dadurch die Mittelpartie des secundären Vorderhirns immer kleiner, bis deren Rest schliesslich ganz zur Bildung des dritten Ventrikels verwendet wird. — Bei niederen Vertebraten bleiben die embryonalen Formen
auch in dieser Beziehung mehr erhalten, und so sieht man z. B. bei der Schildkröte (Stieda, Zeitschrift f. wiss. Zoologie. Bd. XXV. 1875. Taf. XXVI, Fig. 19) vor dem Zwischenhirn einen medianen Ver-
bindungsteil der beiden Hemisphären, der in Vielem an die Verhältnisse unserer Fig. 51 (Taf. VI) er-
ninnert. Stieda (o. c. S. 380) rechnet ganz richtig den medianen Theil zwischen den Hemisphären als
ezum Vorderhirn gehört, und nicht zum Zwischenhirn, wie es nach REICHERT's Ansicht sein sollte. — Manche Selachier besitzen ein unpaares Vorderhirn, bei anderen ist die Trennung in zwei Halften schwach angedeutet, und es liegt hinter dem Hemisphärenventrikel ein medianer Höhleraum, von dem
MIKLICH-MACLAY ganz zutreffend bemerkt (32. S. 30), dass er dem Raume zwischen den Foramina
Monroi bei höheren Wirbelthierenembryonen entspricht.

Rückblick. Das secundäre Vorderhirn entsteht durch eine gleichmassige Hervorwöl-
bung aus dem Schlussstück des primären Vorderhirns. Dann wird der neugebildete Hirn-
teil durch eine sichelförmige Einschnürung vom Zwischenhirn abgesetzt und zugleich durch die Umbiegung des unteren Theiles jener Einschnürung nach vorne in einen grosseren halb-
kugeligen oberen, und in einen kleineren kahnförmigen unteren Abschnitt getheilt. Der
obere Theil ist die Anlage der Grosshirnhemisphären, insbesondere des Manteltheiles, der
untere enthält die Anlage der Stammganglien des Grosshirns.

Die Hemisphärenblase ist anfangs eine ungetheilte halbkugelförmige Blase vor dem
Zwischenhirn und über dem Stammtheil des secundären Vorderhirns. Dann wird sie durch die einschneidende embryonale Hirnsichel in eine rechte und linke Hälfte getheilt, welche sich in der Form zweier lensförmiger Hohlkörper über die Seitenwände des Zwischenhirns hervorwölben. Dadurch erhielten die Hemisphärenbläschen zwei Flächen; eine äussere convexe Wand, welche unten vermittelt eines breiten Wurzelstückes ohne scharfere Grenzen in den Stammtheil übergeht, und eine innere sichelförmig gebogene Wand, die vorne gegen die ähnliche Wand der anderen Hemisphäre, hinten gegen die äussere Fläche des Zwischenhirns gerichtet ist.

Unter »embryonaler Schlussplatte« versteht man die mediane Partie des secundären Vorderhirns in der Länge der Schlusnaht. Sie beginnt unten bei der Sehnervenkreuzung, verbindet commissurenartig beide Seitenhälfte des Stammtheiles, dringt dann zwischen beide Hemisphärenbläschen in die Tiefe der Mantelspalte hinein und krümmt sich im Bogen nach oben und hinten um, wonach sie in die Deckplatte des Zwischenhirns übergeht. Die Schlussplatte verschliesst vorne den an der Abschrägung nicht betheiligten medianen Höhlraum zwischen beiden Hemisphärenbläschen, welcher später während der Verkleinerung der Monro'schen Löcher allmählich reduziert wird und schliesslich in die Bildung des vordersten Theiles des dritten Ventrikels eingeht.

2) Veränderungen an der Höhlenfläche des secundären Vorderhirns.

Übersicht. Die Grosshirnhemisphären sind anfangs blaseartige Hohlkörper, mit glatter äusserer und innerer Oberfläche, und mit flüssigem Inhalte. Von all jenen Gebilden, welche den Bau des Grosshirns im erwachsenen Individuum so complicirt machen, ist noch nichts vorgebildet, als eine dunne Schale (von 0,1 mm. Dicke), bestehend aus palissadenförmig gestellten länglichen Zellen in anscheinend 3—4 Reihen.

Diese einfachen Verhältnisse gehen allmählich in complicirtere Formen über, theils durch Veränderung der äusseren und inneren Reliefs, theils durch die Ansammlung von nervösen Herden, und der Ausbildung von Leitungsbahnen von jenen Herden zur Hemisphärenrinde und zum centralen Höhlengrau. Im Stammtheil des secundären Vorderhirns kommen vor Allem die Grosshirnganglien zur Entwicklung und bilden ein ruhendes Centrum, um welches die Vorwölbung der Hemisphären nach allen Richtungen, — ausgenommen nach unten, — stattfindet. Dann entwickeln sich an der Innenwand der Hemisphäre zwei, gegen die Höhle vorgestulppte Falten, welche die Anlagen wichtiger Gebilde in den Seitenventrikeln sind. Während ferner das Grosshirn über das Zwischenhirn nach rückwärts auswächst, wölbt sich an der Höhlenfläche des Stammtheiles die Anlage der Grosshirnganglien zu einem hügelartigen Vorsprung hervor und kommt mit dem Zwischenhirn in eine innige Verbindung. Mit der Vorwölbung des Ganglienbügels wird das weite primitive Foramen Monroi allmähig
verengert, womit der Seitenventrikel seine charakteristische Gestalt erhalten hat. — Nach dieser kurzen Ubersicht der Veränderungen an der Höhlenfläche, können wir zur speziellen Beschreibung übergehen, und werden vor Allem die Entwicklung des Ganglienhügels zu besprechen haben.

Ganglienhügel. Der Bodentheil des secundären Vorderhirns ist anfangs ähnlich dem Schnabel eines Kahnes, mit verhältnismässig weiter Lichtung und ausgehöhltem Boden versehen (Taf. I, Fig. 2 ggl und Fig. 3 bhm und Fig. 6 bhm). Ganz vorne geht es ohne schärferen Grenzen in den Wurzeltheil der Hemisphärenblasen über, hinten in die Trichterregion des Zwischenhirns.

Sobald die Theilung der gemeinsamen Hemisphärenblase erfolgt ist und die Hemisphären über das Zwischenhirn nach ruckwärts sich vorzuwölben beginnen, entsteht am Stammtheil des secundären Vorderhirns durch Vermehrung der Zellen ein kleiner vorragender Hügel. Bei Kaninchenembryonen kommt der Hügel dann zur Entwicklung, wenn sie eine Länge von 12—13 mm. erreicht haben und ist dann 0,2 mm. hoch (Taf. I, Fig. 4 ggl und Fig. 5 str; Taf. V, Fig. 47 ggl). Der vordere Theil des Hügels erstreckt sich auf den Wurzeltheil der betreffenden Hemisphärenblase und ist von der Höhlenfläche der Hemisphäre durch eine seichte Furche getrennt (Taf. I, Fig. 4), nach hinten verflacht er sich vor dem Sehnervendivertikel. Der Hügel ist die Anlage des Stammgangliens, d. h. des Streifenkörpers, des Linsenkerns, des Bandkerns und auch eines kleinen Theiles des Sehhügels, und besteht vor der Hand aus ründlichen embryonalen Bildungszellen mit sehr spärlicher Zwi-

schensubstanz.

Da der Ganglienhügel sich vorne bis auf den Wurzeltheil der betreffenden Hemisphärenblase erstreckt, so ragt seine convexe Oberfläche in die Hemisphärenhöhle von unten hinein, und bildet nunmehr die untere Begrenzung des Foramen Monroi primitivum. Der obere Theil der Ganglienanlage ist convex, der untere Abschnitt fast vertical gestellt und jenem der anderen Seite so sehr genähert, dass aus der weiten Höhle des Stammtheiles des secundären Vorderhirns eine schmale Spalte geworden ist, die in der Medianlinie durch die dunn gebliebene embryonale Schlussplatte abgeschlossen ist (Taf. I, Fig. 5 bhm).

So sind die ersten Lagerungsverhältnisse des Stammgangliens. Sie entstehen also in dem ungetheilt gebliebenen Bodentheil des secundären Vorder-

Stammlappen. Die Vergrößerung des Hügels am Wurzeltheil der Hemisphärenblase erfolgt Hand in Hand mit der Ausbreitung der Hemisphäre nach rückwärts. Während der Ausbreitung bildet der Hügel ein ruhendes Centrum, welches in der Vergrößerung mit dem Hemisphärenmantel nicht gleichen Schritt hält, was zur Folge hat, dass der Grosshirnmantel über die Anlage der Stammganglien sich nach allen Richtungen hervorwölbt. So entstand am Stammtbeil des secundären Vorderhirns aussen eine flache Vertiefung, welche die Anlage des Stammlappens (Rau'schen Insel) und der Sylvischen Grube ist (Taf. II, Fig. 13). Die Entwicklung der Sylvischen Grube und der Insel ist also die Folge der vorangehenden Ausbildung der Stammganglien. — Vor der Hand mag zum Verständniss des Nachfolgenden vorangeschickt sein, dass sich der Manteltheil der Hemisphären alsbald in bohnenförmiger Gestalt um die Sylvische Grube nach vorne, oben und hinten ausdehnt, bis es das Zwischenhirn ganz bedeckt (Taf. II, Figg. 13, 15, 19), dann einen Nebenfortsatz nach hinten über die Vierhügel entsendet (Taf. II, Fig. 19 oep), in dem wir den Hinterhauptslappen (lobus occipitalis) erkennen, — dieser wird also später gebildet als die Stirn- und Schlafelappen (am Ende des 4. Monates). Demgemäß wird auch der Seitenventrikel zuerst eine Cylindrische Gestalt haben, um die Anlage der Grosshirnganglien gebogene Gestalt mit Vorder- und Unterhorn haben, das Hinterhorn aber erst nachträglich, mit der Ausbildung des Occipitallappens dazu kommen.

Ammonfalte und seitliche Adergeflechtfalte. Vor der Hand müssen wir die weitere Entwicklung der Stammganglien auf eine kurze Zeit verlassen, weil gleich nach ihrer Hervorwölbung wichtige Falten an der Innenwand der Hemisphäre entstehen, welche unsere Aufmerksamkeit in hohem Grade in Anspruch nehmen.

Beim der Entwicklung der Falten ist die innere, in der Mantelregion gelegene Wand der Hemisphäre beteiligt. Von dieser Wand wurde erwähnt, dass sie vor der embryonalen Schlossplatte fast vertical steht, mit ihrem hinteren Theile sich aber der äusseren convexen Oberfläche des Zwischenhirns anschmiegt und sichelförmige Platte (Reichert) heisst. Beim Übergang des vorderen verticalen Theiles zur sichelförmigen Platte ist die Hemisphäreninnenwand in stumpfem Winkel gebogen (Taf. II, Fig. 14).

Die ganze innere Wand der Hemisphäre ist anfangs glatt, ohne Furchen oder anderweitige Unebenheiten. Es ist selbst dann noch der Fall, wenn der Ganglien hügel am Wurzeltheil der Hemisphärenblase vorzuragen beginnt. Bald entstehen aber an der sichelförmigen Platte zwei, mit der Mantelkante beinahe parallel verlaufende kurze Falten, welche man am besten sehen kann, wenn die äussere Wand des Gehirnmantels entfernt wird, wie es Fig. 9 (Taf. I) von einem 16mm. langen Kaninchenembryo zeigt (amm und chd). Daran sieht man die gegen die Hohlenfläche der Hemisphäre vorragenden Falten am hinteren Rand des weiten Monro'schen Loches (m) entstehen, und parallel mit einander gegen das untere Ende des Schlafenlappens hinunterziehen, ohne das letztere zu erreichen. Die obere dieser Falten (amm) ist die Anlage des Ammonshornes und mag darum Ammonsfalte heissen, die untere (chd) wird zum Epithel der seitlichen Adergeflechte, darum nenne ich sie seitliche Adergeflecht falte. Diesen Falten entsprechen natürlich an der entgegen-

Von den weiteren Veränderungen der Falten mag schon jetzt erwähnt sein, dass die Ammonsfalte in gleichem Verhältniss mit der Hemisphärenwand sich verstärkt, und zu einem flachen Wulste im Seitenventrikel wird (Taf. I, Fig. 10 amm). Der Ammonshornwulst beginnt dann über dem einstweilen verkleinerten Monros'schen Loch und zieht halbkreisförmig gebogen bis zum Ende des Schläfenlappens hinunter. An der Adergeflechtfalte dagegen verdünnt sich die Hemisphärenwand, bis sie aus Einer Reihe kurz cylindrischer Zellen besteht, welche nachher das Epithel der seitlichen Adergeflechte liefern (Taf. V, Fig. 48 chd), worüber noch am Ende dieses Kapitels einiges gesagt werden wird. Jetzt nehmen wir nochmals die weite Entwicklung der Stammganglien und die damit erfolgende Verengerung des Monro'schen Loches auf.

Stammganglien. Die Anlage der Grosshirnganglrien ragt anfangs als ein kleiner Hügel von unten in den Hohlraum der Hemisphäre hinein und ist, wie überhaupt der Wurzeltheil der Hemisphäre, ganz kurz (Taf. I, Fig. 4 ggl und Fig. 5 str). Die freie Oberfläche des Hügels gewinnt an Länge erst dann, wenn der Schläfenlappen sich nach unten über die Trichterregion vorzuwölben beginnt. Damit verlängert sich auch jener Hügel bogenförmig nach hinten und unten und erhält allmählich die charakteristische birnförmige Gestalt des Streifenhügels. Die Massenablagerung erfolgt hauptsächlich nach oben zu, und geräth dadurch des Streifenhügel, dessen Kopf anfangs ganz vor dem Zwischenhirn (Sehhügel) gelegen war, mit seinem Körper und Schweif an die äussere Seite des Zwischenhirns. Körper und Schweif des Streifenhügels kommen während ihrer Ausbildung sogleich mit der äusseren Wand des Zwischenhirns in eine innige Verbindung, weil — meiner Ansicht nach — aus dem medialen Theil des Ganglienhügels auch ein kleiner Theil des Sehhügels gebildet wird, nämlich jener Theil, welcher im Seitenventrikel liegt. So ist es ferner erklaarlich, dass an der hinteren Umgrenzung des weiten primitiven Foramen Monroi, wo anfangs der Umschlag der sichelförmigen Platte in die Seitenwand des Zwischenhirns stattgefunden hat (Taf. I, Fig. 9), mit der erfolgenden Erhebung des Streifenhügels (str) und der Verstärkung der Sehhügelregion (rth) eine ausgebreitete Verbindung zwischen Sehhügel und Streifenhügel eingetreten ist, welche nachher an Dimensionen so sehr zunimmt, dass der Sehhügel ganz an die innere Seite des Streifenhügels zu liegen kommt. Das Corpus striatum liegt dann bogenförmig über den einstweilen zu einer stärkeren Entwicklung gekommenen übrigen Stammganglien, namentlich dem Linsenkern, welcher im unteren Theile des Ganglienhügels entstand. Beiden Gebilden entspricht der Lage nach aussen die Sylvische Grube mit der Insel (Taf. II, Fig. 20). Die innige Beziehung aller Ganglienmassen erweist sich später darin, dass sie nach unten alle mit einander (Linsenkern, Streifenhügel und Bandkern)
und mit jenen grauen Massen zusammenhängen, welche an der Basis des secundären Vorderhirns entstehen (tuber olfactorium, vordere und seitliche Siebsubstanz).

Für gewöhnlich hält man den Hornstreif für einen Rest des unteren Saumes der Hemisphäreninnenwand, welcher nach der Bildung einer Längsspalte, wo die Pia zur Bildung der seitlichen Ad人gefl echt in den Seitenventrikel hineinwuchern soll, an der Grenze zwischen Seh- und Streifenhügel zurückbleibt (1). — Diese Auffassung ist meinen Beobachtungen nach nicht richtig, denn abgesehen davon, dass ein Spalt an der Hemisphäreninnenwand nicht zur Entwicklung kommt, wie das sogleich erörtert werden wird, findet die Anheftung des unteren Saumes der Hemisphäreninnenwand medialwärts von der Stria cornea, an die sog. horizontale Fläche des Sehhügels statt. — Der Hornstreif entsteht also durch eine locale Differenzierung von Nervenfasern in der Furche zwischen Seh- und Streifenhügel und liegt ganz im Seitenventrikel.

Foramen Monroi. Mit der stärkeren Ausbildung des Ganglienhügels, insbesondere dessen Sehhügeltheiles, wurde das weite primitive Foramen Monroi allmählich zu einer schmalen Spalte verkleinert, das Loch wurde verstopft, wie man diesen Vorgang zu nennen pflegt. Das definitive Foramen Monroi repräsentiert also nur den vorderen oberen Theil des primitiven Monro'schen Loches, der hintere Theil wurde während der Vergrösserung des Ganglienhügels und dessen Verschmelzung mit dem Zwischenhirn allmählich von unten nach oben verkleinert, bis bloss eine längliche Spalte zwischen dem medialen Theil des Ganglienhügels (Sehhügel) und der embryonalen Schlussplatte (welche nachher zur Entwicklung der Gewölbe- säulchen verwendet wird), zurückbleibt.

Seitliche Adergefechts. Die Adergefechtsfalte, von der vorhin Erwähnung geschehen ist (S. 114), behält ihre Lage unterhalb der Ammonsfalte auch fernerhin bei (Taf. I, Fig. 9 cd₁). Sie ist anfangs ziemlich hoch über dem Ganglienbügel gelegen, — das ändert sich aber mit der Zeit, indem der Streifenbügel und der lateralventriculäre Theil des Sehbügels während ihrer Vergrösserung allmählich an die Adergefechtsfalte heranrückt, bis der Sehbügel unmittelbar unter der Adergefechtsfalte liegt (Taf. I, Fig. 10 cd₁). Die Falte erstreckt sich dann vom oberen Ende des verengerten Monros'schen Loches fast bis an die Endgrenze des Unterhornes hinunter, bogenförmig gekrümmt, wie der Seh- und Streifenbügel. — Inzwischen sind an der Falte auch andere Veränderungen eingetreten, namentlich ist sie im Querdurchmesser länger geworden und hat sich ihre Wand zu einer Lage cylindrischer Zellen von 0,018 mm. Höhe verändert (Taf. VI, Fig. 59 cd₁); nachher ist das Bindegewebe am freien Rand der Falte in zottenartige Vorsprünge ausgewachsen, welche vom Epithel kontinuirt bedeckt bleiben. So sind die seitlichen Adergefechts in die Seitenventrikel zu liegen gekommen, ohne dass ein Längsspalte an der Hemisphereinnenwand entstanden ist, wo die Pia zur Bildung der seitlichen Adergefechts in den Seitenventrikel hineingewuchert wäre. Die Entwicklung der seitlichen Adergefechts geschieht also ganz nach derselben Art, wie jene der übrigen ähnlichen Bildungen: Gefässe und Bindegewebe werden vom Mesoblast, das Epithel vom Centralnervensystem geliefert. Demnach könnte man mit Recht sagen, dass das Bindegeewebe und die Gefässe der Adergefechts ganz ausserhalb der Ventrikelhöhlen liegen. — Die Ausbildung der seitlichen Adergefechts gestaltet sich darum etwas verkleinerter, als jene der übrigen, weil die zu ihrer Entwicklung dienenden Falten sekundäre Bildungen sind, während die Anlagen der übrigen Adergefechts zu den ursprünglich gegebenen Theilen des Centralnervensystems gehören.

Die Entwicklung der seitlichen Adergefechts giebt Aufschuss darüber, dass ein eigentlicher Spalt an der Hemisphereinnenwand, wie es die Anatomien und manche Embryologen annehmen, nicht zur Entwicklung kommt. Dieser Spalt (Randspalte, fissura marginalis Amy) soll nach jener Annahme zwischen den Gewölbeschenkeln und dem Hornstreif entstehen,

1) S. darüber das nächste Kapitel. Hier sei einstweilen erwähnt, dass der Gewölbekörper mit den hinteren Schenkeln und der Fimbria aus dem untersten, unmittelbar an die Adergefechtsfalte grenzenden Saum der Hemisphereinnenwand, resp. der Bogenfurche, durch eine Differenzierung von Längsfasern entsteht.

Auch bei den seitlichen Adergefälschenten erhalten sich, wie bei den übrigen ähnlichen Gebilden, beim Übergang des Epithels in die Nervensubstanz nervöse Säume (tæniae medullares), ähnlich den Tæniæ thalami und den Tæniæ fossae rhomboidalis. Da das Epithel der seitlichen Adergefälsche in Form einer Falte angelegt wurde, so müssen die Adergefälsche eine obere und untere Epithellage, dem entsprechend zwei Anheftungssäume und einen freien Umschlagsrand besitzen (Taf. VI, Fig. 59 c h d). Die Anheftungs-stelle der oberen Epithellage findet in der Länge des Gewölbes (des Körpers, der hinteren Schenkel und der Fimbria) statt, der zugeschärfte Rand des Gewölbes repräsentirt also die Tænia medullaris der oberen Epithellage. Die untere Epithellage sollte nach der Auffassung jener Autoren, welche den Hornstreif als den unteren zurückgebliebenen Rest der Hemisphäreninnenwand betrachteten, sich an die Stria cornea anheften, resp. der Hornstreif die Tænia der unteren Epithellage sein. Das ist jedoch keineswegs der Fall. Untersucht man nämlich frische menschliche Gehirne auf den Verlauf der in Rede stehenden Anheftungs-stelle, so findet man sie im Vorderhorn und in der Cella media des Seitenventrikels nach innen von dem Hornstreif aber parallel mit diesem verlaufend, und zwar vorne in einer Entfernung von 1—2, beim Tuberculum sup. thalami 3—4, etwas dahinter 5—6, dann beim Pulvinar in einer Entfernung von 3—2 mm. 1); beim Pulvinar nähert sich dann der Anheftungssäum dem Hornstreif und verläuft von da an in dessen unmittelbarer Nähe in das Unterhorn hinunter. — Daraus folgt die Bestätigung jener vorhin (S. 113) gemachten Angabe, dass der Hornstreif nicht aus dem untersten Saum der Hemisphäreninnenwand hervorgegangen ist und nicht die Anheftungs-stelle der unteren Epithellage der seitlichen Adergefälsche an die Stammganglien repräsentirt, ferner, dass ein kleiner Theil des Sehhügels vollkommen im Seitenventrikel liegt, jener nämlich, der zwischen dem Hornstreif und der Anheftung der unteren Epithellage der seitlichen Adergefälsche gelegen ist.

Es ist in den Lehrbüchern der Anatomie gebräuchlich die seitlichen und mittleren Adergefälsche als Eine Bildung aufzufassen, und mit den Namen der oberen Adergefälsche

1) Jene Furche, welche Henle in Fig. 78 (Nervenlehre S. 137) für den Abdruck des auf dem Thalamus ruhenden Plexus choroides lat. bezeichnet, ist beiläufig die Stelle, wo die untere Epithellage der seitlichen Adergefälsche in das Ependym des Sehhügels übergeht. Die Partie nach aussen von dieser Furche bis zum Hornstreif liegt im Seitenventrikel, der nach innen davon gelegene Theil bis zur Tænia thalami liegt extraventriculär, — er geht hinten in das Pulvinar und das Corpus geniculatum ext. über, welche sich weiterhin in den Sehstreffen fortsetzen, — diese ganze Partie stammt also aus der äusseren Fläche des Zwischenhirns.

Ein Übergang des Epithels der mittleren Adergeflechte in jenes der seitlichen findet nur vorne beim Foramen Monroi statt, wo es gebräuchlich ist zu sagen, dass die mittleren Adergeflechte durch das Monro'sche Loch in den Seitenventrikel hineindringen\(^2\)). Das Übergangsstück im Foramen Monroi ist gerade so beschaffen, wie die Tela choroidia lateralis, es besteht nämlich aus einer horizontalen kurzen Lamelle, zusammengesetzt aus zwei Epithellagen und versehen mit kleinen Zotten. Die obere Epithellage heftet sich an die aufsteigenden Gewölbestückchen an, die untere Epithellage hängt mit einer feinen Marklamelle\(^3\)) zusammen, welche sich nach hinten beim Tuberc. sup. thal. in die untere Epithellage der seitlichen Adergeflechte fortsetzt. Das Alles steht im Einklang damit, dass die Deckplatte des 3. Ventriks, welche zum Epithel der mittleren Adergeflechte wurde, vorne direct in die embryonale Schlussplatte, welche wieder in die Bildung der Gewölbestückchen eingeh, überging.

Die seitlichen Adergeflechte sind anfangs schwach und bleiben es fortwährend bei jenen Thieren, welche schwach entwickelte Hemisphären haben. Bei Säugethiereembryonen

\(^2\) S. darüber die Abbildungen bei REICHERT (44) Taf. II, Fig. 5 u. Taf. III, Fig. 10.

\(^3\) Diese Lamelle halte ich für jene Membran, von welcher HENLE angiebt (Nervenlehre S. 136), dass sie zwischen dem vorderen Ende des Hornstieofs und den Wurzeln der Gewölbestückchen ausgespannt ist.

Seitenventrikel. Die Höhle der Grosshirnblase ist anfangs im Verhältniss zur Dicke der Hemisphärenwand sehr geräumig. Selbst dann, wenn die Grosshirnganglienzur Entwicklung kommen, bleibt die Höhle sehr weit, weil sich zu gleicher Zeit die Hemisphären stark nach oben und hinten ausdehnen. Der Seitenventrikel hat, so lange der Hinterhaupts lappen nicht zur Entwicklung gekommen ist, die Form eines C (彰), also bloss ein Vorder und Unterhorn (Cornu ant. et inf.), ersteres im Stirn-, letzteres im Schlafenlappen gelegen (Taf. I, Fig. 10). Am verstopten Monro'schen Loch (fmr) ziehen über dem Streifenhügel (str) die seitlichen Adergeflechte (chd) zum Unterhorn, darauf liegt der ähnlich gebogene Ammonswulst (amm). Der Ventrikel ist noch sehr tief, weil der Balken und das Centrum semiovale nicht ausgebildet sind. — Wenn der Occipitalappen zur Entwicklung kommt, dann zieht ein blinden Fortsatz des Ventriksels hinein, der wegen seiner nachträglichen Bildung eher den Namen eines Recessus occipitalis (Aery) als Cornu posterius verdient (Taf. II, Fig. 20 crnö). In dieses Divertikel zieht im 4. Monat vom Ammonswulst eine Neben falte hinein, welche zur Vogelklauæ (calcar avis) wird. An der äusseren Seite des Ammonswulstes zieht die Eminentia collateralis Meckelii ins Unterhorn hinunter, die sich aber nicht immer in gleicher Weise entwickelt, manchmal sogar ganz fehlen kann 1). — Die definitive Gestalt erhält der Seitenventrikel erst mit der gänzlichen Ausbildung des Balkens und des Stabkranzes. Die Einleitung dazu erfolgt schon im 3. Monate, doch sind zu dieser Zeit die Ventrikel noch sehr hoch und weit, im 6.—7. Monat wird die geräumige Ventrikel von vorne, oben und hinten verengt, bis dessen Mittelteil (cella media) zur engen Stelle der Hemisphärenhöhle wird.

Endlich muss ich noch gegen eine, in anatomischen Lehrbüchern gangbare Beschreibung Einsprache thun. Es ist nämlich gebräuchlich den mittleren Ventrikel mit den Seitenventrikeln zusammengenommen als Eine gemeinsame Höhle zu beschreiben (cavum ecephali ant.), welche von Yformiger Gestalt sei, wo der senkrechte Theil den mittleren, die diver-

girenden Schenkel die Seitenventrikel vorstellen. — Diese Auffassung ist meiner Ansicht nach nicht stichhaltig. Es ist zwar richtig, dass die Seitenventrikel während der ersten Entwicklungsperiode gleichsam divertikelartige Anhänge des mittleren Ventrikels sind, aber im ausgebildeten Gehirn sind beiderlei Ventricle von einander durch das Epithel der betreffen-

Literaturangaben. Von einer detaillierten Beschreibung der Entwicklung der Stammganglien finden wir in der Literatur wenig, und das nur bei Reichert aufgezeichnet. Die übrigen Autoren geben darauf nur mit kurzen Bemerkungen ein.

Am eingehendsten sind die Entwicklungsverhältnisse der Stammganglien und der Seitenventrikel bei Reichert ausgeführt (44. S. 37—40). Seine Beschreibung lautet kurz folgendermassen: Zu gleicher Zeit mit dem Zwiischenhirn verstärken sich die Seitenwände der Hemisphären und des Stammlappens und es entstehen an letzterer Stelle die Grosshirnganglien. Die erste Andeutung dieser Gebilde besteht in einer kleinen Erhabenheit am Stammlappen unter den Foramen Monroi. Durch stärkere Ansamm-

Über die Bildung der seitlichen Adergefäße waren die meisten Forscher bisher der Ansicht, dass diese als eine Wucherung der Pia mater durch eine Spalte an der Hemisphäreninnenwand in den Seitenventrikel hinein gelange. Aebi (o. c. S. 823) nennt die Spalte Randspalte (fissura marginalis), deren Ränder oberen und unteren Randbogen (arcus marg. sup. et inf.). Man meint, die Spalte stehe anfangs fast vertical vor dem Sehstügel, und nehme mit der Ausbreitung der Hemisphäre

Reichert (44. S. 40) erkennt die Spalte nicht an. Nach ihm sind die Seitenventrikel stets geschlossen und die Plexus laterales Wucherungen des Ependym in der Länge der Abschnürungslinie der Hemisphären, «die Pia sowie das Adergeflecht, das genetisch das Ependyma vertritt, formieren eine völlig geschlossene Wand der Hirnröhre.»

Wie schon einige Male erwähnt (S. 60 u. 76), war Hensen1) der erste, der alle Ventrikel für geschlossen erklärte, insofern das Epithel der Adergeflechte mit der Hirnwand in Continuität bleibe.

His (20. S. 131) bemerkt über die Entwicklung der seitlichen Adergeflechte nur kurz, dass durch den vom Trichterfortsatz auf die Hirnsichel ausgeübten Zug, die Decke des Vorder- und Zwischenhirns stark verdünnt wird, aus welcher dann nach der Epithel der mittleren und seitlichen Adergeflechte sich bulde.

Rückblick. Die Veränderungen an der Höhlenfläche des Grosshirns lassen sich in Folgendem überblicken:

Der Seitenventrikel besitzt entsprechend der bohnenförmig gebogenen Gestalt der Hemisphäre anfangs bloss ein Vorder- und Unterhorn, das Hinterhorn kommt als ein diver-

3) Entwicklung der durchsichtigen Scheidewand, der vorderen Hirncommissur, des Gewölbes und des Balkens.

Als embryonale Schlusplatte (lamina terminalis) bezeichneten (S. 106) wir jenen medianen Theil des secundären Vorderhirns, welcher die Seitenhälften dieses Hirnteiles vereinigte und während der Abschürung der Hemisphärenblasen zum grössten Theil in die Tiefe der Mantelspalte zu liegen kam. Die schmale Platte erstreckt sich dann von der Sehnervenkreuzung bogenförmig nach oben umbiegend bis an die Deckplatte des Zwischenhirns und begrenzt vorne das zwischen beiden Hemisphärenblasen gelegene Mittelstück des secundären Vorderhirns (Taf. I, Fig. 8 trm). Am schmälsten ist die Platte in ihrem Mitteltheile, oben gegen die Decke des Zwischenhirns und unten gegen den Stammtheil des secundären
Vorderhirns wird sie breiter. Sie ist überall etwas schwächer als die Wand der Hemisphären (Taf. VI, Fig. 54 trm), besitzt sonst mit jenen eine gleichbeschaffene Structur. Die in der Mantelspalte gelegene embryonale Hirnsichel (flx) erstreckt sich bis an die Schlussplatte und geht über der Decke des Zwischenhirns in eine reiche Bindegewebslage über, seitwärts aber in eine Bindegewebslamelle (flx.), welche sich zwischen die sichelförmige Platte und die äussere Wand des Zwischenhirns hineingelagert hat (hintere Hörner der Hirnsichel Durst 9. S. 68). Die Bindegewebslamelle verläuft bogenförmig wie die sichelförmige Platte nach unten, und giebt nachher durch eine Wucherung gegen die Höhle des Seitenventrikels zur Entwicklung der seitlichen Adergefälsche Veranlassung.

Während der Vergrösserung der Hemisphären vermittelt die embryonale Schlussplatte noch fortwährend den Zusammenhang der beiderseitigen Hemisphäreninnenwände in der Tiefe der Mantelspalte. Inzwischen sind an der sichelförmigen Platte auch die Ammonsfalten und die Adergefälsche Falte zu einer stärkeren Entwicklung gekommen. Macht man an einem Gehirn aus diesem Entwicklungsstadium einen Querschnitt durch die Mitte der Hemisphären so, dass der untere Theil der Schlussplatte getroffen wird, dann erhält man ein instructives Uebersichtspräparat über die Verhältnisse der Lamina terminalis und der Hirnsichel.

Ein solches Bild gibt Fig. 59 (Taf. VI) von einem 2 cm. langen Kaninchenebryo 4). Man sieht daran in der Mantelplatte die embryonale Hirnsichel (flx), welche sich unten bis an die Schlussplatte (trm), oben bis an die Deckplatte des Zwischenhirns (chd) erstreckt. Die Schlussplatte vermittelt den Zusammenhang zwischen den dünngebliebenen Theilen der Hemisphäreninnenwände (spt). Die Anlage der Stammmangel mit der Längsnarbe ist sogleich zu erkennen (str). Darauf folgt der Hemisphärenmantel, welcher oben in die innere Wand (sichelförmige Platte) des Grosshirns umbiegt. An der sichelförmigen Platte sieht man vor Allem den Ammonswulst (amm) und darunter tief in den Seitenventrikel hineinragend die seitliche Adergefälsche Falte (chd); die obere Epithellage der letzteren ist in continuirlichem Zusammenhang mit dem unteren Rand des Ammonswulstes, die untere Epithellage geht in den vorderen Theil der Schilfgelanlage (thm) über. Zwischen die sichelförmigen Platten beider Hemisphären ist der vordere obere Theil des Zwischenhirns, also die Schilfgelregion, hineingeschoben; dessen Seitenwände (thm) sind verdickt, die Decke (Anlage des Epithels der Tela choroidea media) verdünnt (chd). Hier reicht die embryonale Hirnsichel (flx) bis an die Deckplatte heran und teilt sich dort in zwei divergirende Schenkel, welche zwischen der sichelförmigen Platte und der äusseren Wand des Zwischenhirns in die Adergefälschalten hineinziehen. Der mittlere Ventrikel (str) ist durch die Foramina Monro (frm) noch in weiter Verbindung mit den Seitenventrikeln (ptr); die Oeffnungen liegen zwischen dem Wurzeltheil der seitlichen Adergefälschalte und der embryonalen Schlussplatte.

v. Mikahlovsits, Entwicklung des Gehirns.

Durch die beschriebene Verwachsung der Hemisphäreninnenwände entsteht vor dem 3. Ventrikel eine solide Masse, die durchsichtige Scheidewand (septum pellucidum) des Säugethierehirns. Der Name »durchsichtige« passt hier also nicht, darum wollen wir sie

2) W. KRAESE (p. c.) beschreibt beim Kaninchen einen 7 mm. langen Ventriculus septi pellucidi. STRIEBER erwähnt dessen nicht und auch ich fand keinen solchen. — Selbst bei den Affen sind nach MYERNER (Stricker's Handbuch S. 747) die Septa pellucida mit einander verwachsen, so dass der Ventriculus septi pellucidi eine ausschliessliche Eigenthümlichkeit des menschlichen Gehirns zu sein scheint.
künftighin einfach die Scheidewand der Seitenventrikel \(^1\) nennen, weil von ihr rechts und links die Vorderhörner der Seitenventrikel liegen. Die Scheidewand besteht zur Zeit der erfolgten Verwachsung aus rundlichen embryonalen Bildungszellen, ohne Differenzierung von Nervenfasern.

Fig. 17 (Taf. II) zeigt die Gestalt der Scheidewand an einem medianen Längsschnitt des Gehirns von einem 8 cm. langen Rindsembryo. Es liegt die rechte Schnitthälfte vor. Wie vorhin erwähnt, kann die Gestalt der Scheidewand \(spt \) im Längsschnitt anähnern für dreieckig genommen werden, die Spitze der beiden längeren Schenkel ist nach unten gerichtet und verliert sich bei der grauen Endplatte des 3. Ventrikels. Der kurze Schenkel des Dreiecks liegt oben in gleichem Niveau mit der Deckplatte des 3. Ventrikels. Hinter der Scheidewand sieht man die eröffnete mittlere Hirnkammer mit dem Monro'schen Loch. Die Trichterregion des Zwischenhirns ist mit dem unteren Theile der Scheidewand und dem Ganglienbügel verwachsen, wodurch von dort der Zugang zu den Hemisphärenhöhlen aufgehoben ist. Endlich ist noch eine Furche an der Innenwand der Hemisphäre zu erwähnen (in der Abbildung zu schwach angedeutet), welche über der Scheidewand beginnt, dann von dort bogenförmig bis zum Ende des Schläfenlappens hinunterzieht. Der Furche entspricht im Seitenventrikel der Ammonswulst, darum wird sie Ammonsfurche oder Bogenfurche \((A\text{rnold}) \), der durch die Furche abgegrenzte halbkörperförmige Theil der Hemisphäreninnenwand Randbogen \((F. \text{ Schmidt}) \) genannt. Unter dem Randbogen erstreckt sich die seitliche Adergefl echt falte in den Seitenventrikel hinein, was an unserer Figur, wegen der Verdeckung durch das Zwischenhirn, natürlich nicht zu sehen ist.

Vordere Hirncommissur und Gewölbe. Die verwachsene Scheidewand besteht anfangs aus dicht beisammen liegenden embryonalen Bildungszellen, rundlich und polygonal von Gestalt, mit scharfen runden Kernen und sehr wenig Zwischensubstanz. An der Verwachsungsstelle ist an geführten Schnittpräparaten eine Zeit lang ein dunkler Streifen zu erkennen. Dieser einfache Zustand erhält sich aber nur kurze Zeit. \(\text{Bei Kaninch enembryonen von} \) 2,5—3 cm. Länge sieht man schon an Querschnitten der Scheidewand zu beiden Seiten der dunklen Naht zwei verticale und darunter einen horizontalen hellen Streifen von je 0,02 mm. Stärke \(\text{(Taf. VII, Fig. 60 frx u. ema)} \). Bei stärkerer Vergrößerung erkennt man die Streifen als aus feinen marklosen Nervenfasern zusammengesetzt, mit zwischen gestreuten Zellenreihen. Der Lage nach wird man in den vertikalen Streifen \(\text{(frx)} \) die aufsteigenden Säulchen des Gewölbes, in dem horizontalen Streif \(\text{(ema)} \) die vordere Hirncommissur erkannt haben. — Verfolgt man eine Reihe von Längs- und Querschnitten über den Verlauf der Streifen \(\text{(wozu etwas ältere Embryonen verwendet werden mögen, wo die Streifen stärker ausgebildet sind), so erkennt man, dass die Fasern der vorderen Hirncommissur nach zwei Stellen hin divergieren. Erstens einmal ziehen in halbkreisförmiger Biegung nach vorne, und gehen in den Riechlappen \(\text{(lobus olfactorius)} \) über, zweitens verliert sich die...}

\(^1\) Siedea \(\text{(o. c. Bd. XIX. S. 83 u. 88)} \) nennt die Scheidewand im Verein mit dem angrenzenden Bodentheil der Hemisphären Substantia cinerea anterior.

Stabkranz. Nach dem Vorgetragenen kommen in der Scheidewand vor allem die Fasern der vorderen Hirncommissur und des Gewölbes zur Entwicklung, von dens Querfasern des Balkens ist noch nichts vorhanden. Im Mantel der Hemisphären sieht man aber schon zu dieser Zeit einen ähnlichen hellen Streifen wie die Gewölbesäulchen (Taf. VII, Fig. 60 cor). Durchmustert man eine Serie von Schnitten über den Ursprung dieser Fasern, so erkennt man, dass sie von den Hirnschenkeln zu den Grosshirngängen, dann durch und zwischen den Ganglien zum Hemisphärenmantel ziehen. Darin wird man die Fasern des Stabkranzes (corona radiata) erkannt haben. Also auch die Stabkranzfasern kommen früher zur Entwicklung als die Balkenfasern.

Balken. Die erste Andeutung des Balkens erscheint dann, wenn die Kaninchenelembryonen eine Länge von 3,5—4 cm. erreicht haben. Ein Querschnitt durch die Gegend der Ventrikelscheidewand eines 3,8 cm. langen Kaninchenelembryos (Taf. VII, Fig. 61) zeigt vor allem zwischen den Vorderhörnern der Seitenventrikel die verwachsenen Scheidewände (spl) mit der dunklen Naht (rph), dann daneben die angeschnittenen aufsteigenden Gewölbesäulchen (frx) und in obersten Theil der Scheidewand ein Bündel querliegender Nervenfasern von 0,05 mm. Stärke (cal), welche bogenförmig nach aussen und oben um- lenken, dann an der äusseren Seite der Stabkranzfasern (cor) liegen und zuletzt sich mit diesen verfliechen. Das Nervenbündel ist die Anlage des Balkens in der primitivsten Ge- stalt. Der ganze Balken erstreckt sich nur auf den oberen Theil der Scheidewand, ist also ganz vor dem 3. Ventrikel gelegen. Um darüber eine positive Ueberzeugung zu erlangen, genügt es von einem ähnlichen entwickelten Gehirn Sagittalschnitte zu untersuchen.

Nach einem solchen Schnitt vom Gehirn eines 4 cm. langen Kaninchenelembryos
ist Fig. 62 (Taf. VII) gezeichnet. Der Schnitt wurde gleich neben der Verwachungsnaht der Scheidewand angelegt, damit auch die aufsteigenden Gewölbesäulchen (f.r.x) zur Ansicht kommen. Man erkennt die annähernd dreieckige Gestalt der Scheidewand (spt), wie sie, nach unten dünner werdend, in die graue Endplatte (trm) des 3. Ventrikels übergeht, desgleichen wie sie oben in der Höhe des Foramen Monroi (f.m.r) endet. Darin sind sichtbar: der rundliche Querschnitt der vorderen Hirncommissur (em.a), dahinter die aufsteigenden Gewölbesäulchen (f.r.x) und noch weiter nach vorne und oben der Balken (cal). Der ganze Balken erstreckt sich nur auf den oberen Theil der Scheidewand, die Decke des 3. Ventrikels ist davon noch ganz frei.

Dass man in diesem kurzen Balken nur den Kniethiel des ausgebildeten Organes zu suchen habe, darüber kann man sich durch Vergleichen mit ausgebildeten Gehirnen leicht überzeugen. Beim ausgebildeten Kaninchen erstreckt sich der hintere Theil des Balkens bis nahe an die Zirbeldrüse 1), welch letztere (pin) aber jetzt noch weit hinter dem eben ausgebildeten Balken liegt. Dagegen könnte vielleicht eingewendet werden, dass der zuerst entstandene kurze Balken dem ganzen Organe (en miniature) entspricht und die fernere Ausbildung nicht durch neuen Massenzusatz nach hinten (Apposition), sondern durch Neubildung von Nervenfasern zwischen den Fasern des primitiven Balkens geschieht (Intussusception), was Hand in Hand mit der Ausbreitung der Hemisphären nach rückwärts erfolgt. Diese Intussusceptionstheorie muss ich aber aus dem Grunde zurückweisen, weil die Hemisphären zu der Zeit, wo der Balken zuerst zur Entwicklung kommt, den 3. Ventrikel schon ganz bedecken, und doch reicht an jener Stelle die Mantelzelle ganz bis an die Tela choroidea media heran. Es unterliegt also keinem Zweifel, dass der in der Scheidewand zuerst zur Entwicklung gekommene kurze Balken nur dem Kniethiel des ganzen Organes entsprechen kann.

Ein zweiter Schnitt durch dasselbe Gehirn von welchem Fig. 61 entnommen ist, nur etwas weiter nach hinten, wird keinen Balken mehr treffen (Taf. VII, Fig. 63). Man sieht daran an der Innenwand der Hemisphären die Ammonswülste (amm), — die beiläufig gesagt bei Säugetieren zu einer sehr starken Entwicklung kommen und sich weit nach vorne erstrecken, — und darunter die Querschnitte des stark gewordenen Gewölbes (f.r.x). Daran ist gut zu sehen, dass der untere Theil der embryonalen Hirnschel (f.l.x) zwischen den Gewölbendurchschnitten in Atrophie begriffen ist. Die Atrophie ist die Folge des Druckes, welchen die Gewölbekörper, — wie man den mittleren, hinter den Foramina Monroi gelegenen Theil des Gewölbes heisst, — auf die Hirnschel ausüben, worauf die Gewölbekörper beider Seiten mit einander verwachsen. Die Verwachungsstelle ist aber nur kurz, gleich im Anschluss an die Ventrikelscheidewand gelegen; etwas hinter den Foramina Monroi sind die Gewölbeschenkel schon geschieden. Ueber dem Gewölbekörper ist die Mantelzelle ganz frei, darin noch keine Balkenfasern vorhanden. Die Stabkanzfasern (cor) sind aber schon zu einer beträchtlichen Stärke entwickelt.

1) Vgl. darüber in Huxley's Anat. d. Wirbeltiere, Bruxau 1873, die Fig. 22A auf S. 38.
Ist das Balkenknie in der Ventrikelscheidewand ausgebildet, dann schreitet die fernere Entwicklung von dort nach rückwärts allmählig fort. Dabei geschieht am Randbogen etwas Ähnliches, wie früher in den Scheidewänden: die Randbogen beider Seiten legen sich über dem 3. Ventrikel aneinander, bringen den zwischengelegenen Theil der embryonalen Hirnsichel zur Atrophie, und verwachsen dann von vorne nach rückwärts in einer Länge, welche der Zwischenhirnende so ziemlich entspricht. Gleich nach der Verwachsung differenzieren sich in den vereinigten Randbogen die Balkenfasern, und zwar in unmittelbarem Anschluss an das Genu corp. callosi, so dass der Balken seine definitive Länge durch eine Art von Apposition nach hinten an die schon einmal ausgebildeten Fasern erhält. So war bei einem Rindsembryro von 15 cm. Länge (Taf. II, Fig. 18) ein Theil des Balkenkörpers (c)U schon ausgebildet, seine definitive Länge hat es aber bis weitem noch nicht erreicht, weil der hintere Theil des 3. Ventrikels vom Balken noch ganz frei ist.

Faserverlauf. Es liegt zwar nicht im Zwecke des vorliegenden Werkes Faserungslehre zu betreiben, doch kann eine gewisse Summe von Begriffen davon zum Verständniss des Vorgetragenen nicht entbehrt werden. Für unsere Zwecke genügt es darüber folgendes kurz anzuführen. 1)

Man unterscheidet im Centralnervensystem dreierlei Fasersysteme: 1) Systeme, welche von der Rinde (Rindengrau Meynert) des Gross- und Kleinhirns nach mancherlei Umlagerungen, zu den Grosshirnganglien, oder mit Umgehung dieser sowohl zum centralen Höhlengrau und von dort zur Peripherie hinziehen. Dabei muss der grösste Theil der Rindel die Grosshirnseckenel und das verlängerte Mark passieren. Ein Theil der Fasern zieht von der Rinde durch die Sch- und Vierlängel zur Gehirn-

3) Endlich gibt es Systeme, welche dazu bestimmt sind identische Gebiete beider Hemisphären commissurenartig zu verknüpfen, und darum Commissuren Systeme genannt werden. — Durchmustern wir nun kurz, in welche dieser drei Kategorien die vordere Hirncommissur, das Gewölbe und der Balken gehört.

Demnach enthält die vordere Hirncommissur wahre Commissuren systeme.

Das Gewölbe repräsentirt zum grössten Theil ein Projectionssystem 4. Ordnung, denn seine Fasern entspringen aus dem Rindengrund der Ammonshornwindung und enden zumeist im Ganglion des Zwischenhirns. Dabei verfolgen die Fasern freilich einen sehr complicirten Verlaufs. Sie bedecken anfangs die Oberfläche des Ammonshornes und bilden dessen weissen Belag (alveus) im Unterhorn des Seitenventrikels, dann gehen sie ununterbrochen in die Fimbria, in die hinteren Schenkel, in den Körp- per, und in die Säulen des Gewölbes über und ziehen endlich durch die Markkugelchen hindurch zum Tubere sup. thalami. Da diese Fasern eine Stelle der Grosshirnrinde mit einem Grosshirnganglion

Abgesehen von der ersten Ansicht, welche durch Faserverbungen leicht zu widerlegen ist, kann man schwer zu einem richtigen Urtheil kommen, welche der beiden anderen Ansichten die richtige sei. Reichert [44, S. 75 Anm.] spricht sich in dieser Hinsicht nicht entschieden aus, und auch Henle (v. e. S. 266) wagt darüber kein sicheres Urtheil zu fällen. — Zerfaserungen und Schnittpräparate geben hier kein zweifelloses Resultat, und auch die Entwicklungsgeschichte gibt darüber keinen positiven Aufschluss. Ich habe mich früher für die Ansicht Gratiolets ausgesprochen [37], weil die Balkenfasern der Zeit nach in unmittelbarem Anschluss an die Fasern des Stabkranzes zur Entwicklung kommen, doch muss ich nunmehr bekennen, dass mir das kein stichhaltiger Grund für die angenommene Kreuzung zu sein scheint, und so muss man die endgültige Entscheidung darüber mit vorangehenden Beobachtungen am Krankheitsverlauf verknüpften Leichenbefunden überlassen.

Bei einem menschlichen Embryo aus der 7. Woche (bei demselben von Fig. 13 u. 14, Taf. H) fand ich die Verhältnisse vor der embryonalen Schlussplatte ähnlich dem in Fig. 59 abgebildeten Kaninchengehirn, d. h. die embryonale Hirnsichel reichte bis an die Schlussplatte heran, eine Vereinigung der Scheidewände hat also noch nicht stattgefunden.. Ammonshorn-und seitliche Adergefäße waren aber schon entwickelt.

So bleiben die Verhältnisse bis zur Mitte des 3. Monates. Dann nähern sich die Hemisphäreninnenwände vor der Schlussplatte in einer ähnlichen dreieckigen Ausbreitung, wie beim vorhin beschriebenen Rindsembryo (von Fig. 17, Taf. H), und verwachsen im peripheren

1) Henle, Nervenlehre. S. 140.
Theil (Taf. II, Fig. 22 spht). Bis zur Mitte des 4. Monates bleibt die verwachsene Stelle blass auf den vor der Schlussplatte gelegenen Theil der Hemisphäreninnenwände beschränkt, und sind darin die vordere Hirncommissur und die aufsteigenden Schenkel des Gewölbdes zur Entwicklung gekommen, und zwar ganz ähnlich, wie wir es früher (S. 123) vom Kaninchen beschrieben haben. Die verwachsene Partie unmittelbar vor der embryonalen Schlussplatte, in welche auch die Lamina terminalis aufgegangen ist, differenziert sich zu den aufsteigenden Säulchen des Gewölbdes, welche von dort im unteren Saum des Randbogens weiter ziehen (Taf. II, Fig. 22 fmb). Jener Theil des Gewölbdes, welcher über dem 3. Ventrikel liegt, verwächst dann mit dem Gewölbe der anderen Seite zum Corpus fornicis. Dieses ist beim Menschen im Querschnitt dreiseitig prismatisch und erstreckt sich von den Foramina Monroi bis nahe an die Zirbeldrüse heran, wo die Gewölbeschkebel auseinander weichen. Manchmal findet man zwischen beiden Schenkel eines horizontal gelagerte feine Lamelle ausge- spannt 1), welche ich für ein Homologon des Fornix transversus der Säugethiere halte. Zu- meist sind aber die Querfasern, welche die feine Lamelle constituiren, mit der unteren Fläche des Balkens verwachsen und werden Lyra oder Psalterium genannt.

2) Hütthiges Faltenhenle, Nervenlehre. S. 136.
zu querliefenden Nervenfasern differenziert wird, während bei Säugethieren ein Theil des weit nach vorne reichenden Ammonshorns nach der Verwachsung der Randhögen unter den Balken zu liegen kommt. Bei Embryonen vom 5. Monat findet man nur den Knieheul des Balkens ausgebildet, und es dauert die definitive Entwicklung des Körpers bis zum Ende des 5. Monates. In der ersten Hälfte des 5. Monates reicht der Balken bis beiläufig zur Mitte der Zwischenhirnzeichene (Taf. III, Fig. 25 ca.), und fällt bei einem solchen Embryo die stark gebogene Gestalt des Balkenknies sogleich in die Augen. Diese geht mit dem 6. Monat in eine winkelig geknickte Gestalt über, und es nimmt jetzt der ganze Balken eine mehr horizontale Lage an (Taf. III, Fig. 28 ca.).

Balkenmangel. Es sind in der Literatur mehrere Fälle bekannt, wo nicht nur bei Missgeburten, sondern selbst bei erwachsenen Individuen, der Balken gar nicht oder nur rudimentär entwickelt war. Dabei findet man aber meistens die Angabe, dass die vordere Hirncommissur und das Gewölbe vorhanden waren, und wenn ein rudimentärer Balken da war, dieser dem vorderen Theile des ganzen Organes entsprach. Das ist auch ganz im Einklang mit der Entwicklung dieser Gebilde, welche zeigt, dass die vordere Commissur und das Gewölbe früher als der Balken, und von letzterem zuerst der

1) Commisur der Stiele des Septum pellucidum, Reichert (44. Taf. VI).
Kniethiel zur Entwicklung kommen. — Es wäre bei solchen Obskurationen künftighin das Augenmerk besonders auf die Verhältnisse der Hirnsichel zu richten. Ich glaube nämlich, dass die Veranlassung zum Mangel des Balkens, — wenigstens im Embryo, — von der Hirnsichel ausgeht, welche die Vereinigung der Bandbogen verhindert, dann müsste aber die Sichel unten mit dem Bindegewebe der vorderen Mantelsche in unmittelbarer Verbindung stehen, wie es im Embryo ist.

Ventriculus septi pellucidi. Beim Menschen entstand durch die Entwicklung des Balkens und Gewölbes eine spaltartige Höhle vor dem 3. Ventrikel (ventriculus septi pellucidi), welche mit den übrigen Hirnventriken in Homologie gesetzt werden darf. Die übrigen Hirnventrikel sind als Dependenzen des embryonalen Medullarrohres von der Höhlenfläche der Marköhre umschlossen, während der 5. Ventrikel ein nachträglich abgekapselter Theil der Mantelspalte ist. Da an der Höhlenfläche des Medullarrohres überall wahres Epithel gebildet wird, so sind die ursprünglichen Hirnventrikel mit wahrem Epithel bedeckt, was im Ventriculus septi pellucidi wegen seiner nachträglichen Entwicklung nicht der Fall sein kann, wo nur eine Endothelbekleidung vorhanden ist.

Die wahren Hirnventrikel sind also epitheliale Hohlräume, der Ventriculus septi pellucidi aber eine Art von seröser Spalte.

Grosse Hirnspalte. Vordere Mantelsche. Durch die Ausbreitung des Balkens nach rückwärts entstand zwischen dem Balkenwulst und den Vierhügeln eine Öffnung, welche von hinten in den 3. Hirnventrikel zu führen scheint. Sie wird grosse Hirnspalte (fissura v. rima transv. cerebri) genannt. Ihre Fortsetzung soll jene Spalte an der Innenschild des Schlafenlappens sein, welche die seitlichen Adergefäße in das Unterhorn hinein-

\(^1\) Ouverture en fer à cheval Gratiolet.
(Taf. I, Fig. 1; Taf. II, Fig. 5). — Die Abtrennung, wie sie Reichert angiebt, ist sofern keine ganz correcte, weil sie die Subst. perf. ant. und die Lamina ein. term. am Zwischenhirn belässt, während diese als aus dem Bodentheil des secundären Vorderhirns hervorgegangen diesem zugehören, ferner weil die Trennungslinie nicht entlang des Hornstreifes verlaufen sollte (wenigstens nicht im Vorderhorn und in der Cella media), wie es Reichert angiebt, sondern medialwärts davon, so dass der lateralventriculäre Theil des Sehhügels am Grosshirn bleibe. Ferner sollte die Abtrennungslinie an der Gehirnbasis auch vorne den Verlauf vor dem Sehstreifen und Chiasma einhalten, wodurch auch jenem Irrthum Reichert's (Taf. III, Fig. 10) abgeholfen würde, dass die vordere Commissur nicht am Zwischenhirn bliebe. Durch eine solche künstliche Trennung wird aber der 3. Ventrikel von vorne ganz eröffnet, darum ist eine brauchbare anatomische Eintheilung des erwachsenen Gehirns nach den embryonalen Hirnblaschen nicht mehr durchzuführen (vgl. darüber auch die Anmerkung Henle's o. c. S. 88).

Vergleichende Anatomie. Der Balken kommt allein bei den Saugethiere zur Entwicklung, die übrigen Wirbeltiere besitzen nur eine vordere Hirncommissur. Ueber das Gewölbe sind bei den Autoren verschiedene Angaben angeführt, was theilweise daher kommt, weil nicht genügend präcis festgestellt ist, was man unter Gewölbe zu verstehen habe. Nehmen wir hierüber die einzelnen Wirbeltierklassen kurz durch.

Die Amphibien besitzen entschieden nur eine schwache vordere Hirncommissur. Nach Stieda 2) besteht die vordere Commissur bei Rana temporaria aus einem oberen und aus einem unteren

Ich bin in voller Gleichbeinstimmung mit den Einwürfen, welche GEGENBAUR 4) von vergleichend anatomischem Standpunkte gegen die GOETZE’sche Auffassung anführt, und erwähne hier von entwicklungs geschichtlichen Gründen, dass um eine Homologie jener verwachsenen Stelle des Batrachiergehirns mit dem Balken bestehen zu können, nothwendig wäre, a) vor Allem, dass darin quere Nervenfasern zur Entwicklung kämen, was aber nach REISSNER (o. c.) nicht der Fall ist, b) ein Gewölbe wenigstens in Rutidimenten vorhanden sei, wie das die frühere Entwicklung des Gehirnplexus in der Ontogenie erfordert. Davon ist aber beim Frosch nichts vorhanden. Nicht einmal mit den verwachsenen Scheidewänden der Säugethiere ist jenes Gebilde in Homologie zu setzen, denn dazu müsste es unmittelbar vor der embryonalen Schlussplatte entstanden, und letztere in ihrer Bildung eingegangen sein. Endlich zeigen Vergleichen mit anderen Thiergehirnen, dass jener Theil, in welchem nach GOETZE der Balken des Frosches entsteht, wirklich der Riechappen ist, und damit ist der Boden der Auffassung entzogen, die verwachsene Stelle für einen Balken anzusehen.

Die Vögel besitzen nur eine vordere Hirn commissur. Vor dieser liegt an der dünnen Hemisphäreninnenwand ein Gebilde, welches von manchen Autoren 5) für das Homologen des Gewölbes ge-

1) Der Bau des centralen Nervensystems der ungeschwänzten Batrachier. Dorpat 1864.

Bei Säugethiere sind die Verhältnisse der Hemisphären zum 3. Ventrikel durch die Verwachsung der Scheidewände etwas anders geworden als beim Menschen. Da zur Untersuchung der in Rede

Literaturangaben. Die Literatur ist reichhaltig an Angaben über die Entwicklung des Balkens und des Gewölbes, doch waren die näheren Entwicklungs verhältnisse dieser Gebilde bis jetzt nur ungenügend bekannt. Die Ursache davon liegt meines Erachtens nach hauptsächlich darin, dass man zur Untersuchung fast ausschliesslich menschliche Embryonen verwendet hat, von welchen die nothwendigen Altersstufen nicht immer nach Wunsch zu erlangen sind, ferner dass Schnittpräparate nicht gehörig zur Verwendung kamen, ohne welche man hierüber nicht ins Reine kommen kann. Kein Wunder also, wenn selbst darüber Controversen herrschten, ob der Balken eine secundäre Bildung oder mit der ursprünglichen Gliederung des Gehirns gegeben ist. Von speciellen Angaben ist folgendes nennenswerth:

Reutzis und Arnold 2) liessen an der Innenwand der Hemisphären zu einer gewissen Zeit eine verticale Spalte entstehen, welche nachher mit der Ausbreitung der Hemisphären zur grossen Hirnspalte-

1) Das Nähere darüber s. bei Stieda o. c. Bd. XIX. S. 82 — 88 und Bd. XX. S. 327.
würde. Aus dem oberen Saum der Spalte soll das Gewölbe dadurch entstehen, dass der Saum sich verdickt und der Länge nach fasert.

Kollmann (25. S. 41) bestätigt die Ansicht Bischoff's nach Untersuchungen an Schafembryonen. Er fand bei Embryonen von 28—38 mm. Länge vor den Sehügeln eine Brücke von Nervensubstanz, die sich bogenförmig bis zur Basis der Hemisphären erstreckte. Diese Verbindung der Hemisphären hat sich bei älteren Embryonen (4—5 cm.) fast gänzlich gelöst, und davon nur eine Brücke von 1 mm. Die am vorderen Rande der Sehügel erhalten. Den Rest der ursprünglichen Verbindungsstelle der Hemisphären erklärt K. für die Anlage des Balkens. Kollmann ist also der Ansicht, dass der Balken erst später deutlicher hervortritt, aber in Wirklichkeit schon in den ersten Wochen vorhanden ist. Der zuerst gebildete Theil ist das Balkenknäuel, von hier aus schreitet dessen Wachstum in einer horizontalen Ebene nach rückwärts fort, und zwar nicht durch histologische Sonderung, sondern durch mechanisches Hineinwachsen von Nervensubstanz aus einer Hemisphäre in die andere, was durch kurze Fortsätze der Nervenmasse bewirkt wird, welche sich nachher in der Medianlinie nähert und vereinigen.

Reichert (44. S. 70—76) erkannte nicht, dass die Hemisphäreninnenwände vor der embryonalen Schlussplatte mit einander verwachsen, sondern meinte, dass die Schlussplatte sich sehr stark verdicke, und zur vorderen Hirncommissur und zu dem Stiel der durchsichtigen Scheidewand wird. Vor der verdickten Schlussplatte bleibt die Hemisphäreninnenwand stets dünn und wird zum Septum pellucidum. Der Balken kommt dann so zur Entwicklung, dass die peripherischen Theile der durchsichtigen Scheidewand mit einander verwachsen, und im oberen Theil der verwachsenen Stelle die Balkenfasern entstehen. Mit der Vergrösserung der Hemisphären nimmt der Balken nach hinten an Länge zu, doch geschieht das nicht durch eine Neubildung, sondern hängt überhaupt mit der Vergrösserung der Hemisphären zusammen. Diese Entwicklungsart soll für die Säugethiere ebenso, wie für den Menschen passen. — Richtig ist die Bemerkung, dass der 5. Hirnventrikel mit den übrigen Ventrikeln nicht homolog sei, weil es nur ein abgekapselter Theil der Scissura pallii ist. — Die Balkenfasern betrachtet R. hauptsächlich für Commissurenysteme, doch hält er es für nicht unmöglich, dass darin auch eine Kreuzung der Hirnschenkelfasern stattfindet.

v. Mißalkovics, Entwicklung des Gehirns.
FLECHSIG (12. S. 49) spricht sich gegen die SCHMIDTSche Auffassung aus, dass nämlich der zuerst gebildete ganz kurze Balken durch Intussusception von Fasern auswachse, weil es nicht denkbar ist, dass die Fasern in den Endtheilen des Corpus callosum so bedeutende Lageverschiebungen erleiden, wie es jene Ansicht erfordert. Vielmehr hält es FL. für wahrscheinlich, dass das kurze cylindrische Bündel dem in die Centralwindingen ausstrahlenden Mitteltheil (Körper) des Balkens entspricht, Knie und aufgesetzter Wulst aber später gebildet werden.

Die letzte Publikation über Gewölbe und Balkenentwicklung gab ich im Centralblatt f. d. med. Wissenschaften im Jahre 1876 [37], wo die hier niedergelegten Resultate in einer vorluißigen Mittheilung kurz veröffentlicht wurden.

Vergleicht man diese Literaturübersicht so sieht man, dass die Art der Gewölbe- und Balken-entwicklung und die dabei interessirten Gegenen bei einzelnen Autoren richtig angegeben sind, der Bildungsgeang selbst aber nicht genügend klar aufgefasst wurde. Die beste Beschreibung gaben F. SCHMIDT, dann REICHERT. Ersterer fehlte aber darin, dass er die Fasern durch einen Durchbruch durch die Hemisphären entstehen liess, der Letztere in der angeblich Verdickung der Schlussplatte, womit er wahrscheinlich die verwachsenen Scheidewände verwechselt hat. Eine Verwachsung der Hemisphäreninnenwände und nachherige Lösung, wie es KOLLMANN will, scheint mit der Untersuchung ungenügend erhärteter Objekte zusammenzuhängen.

Die Zeitfolge betreffend, kommt zuerst die vordere Hirncommissur und das Gewölbe,

4) Die äusseren Formungestaltungen des secundären Vorderhirns.

Uebersicht. Ich fasse alle Veränderungen an der äusseren Oberfläche des secundären Vorderhirns von der Zeit an, wo die Hemisphären durch die Mantelspalte getrennt sind, bis zur Bildung der definitiven Formen in Ein Kapitel zusammen. Dabei werden zwei Aufgaben zu lösen sein. Erstens muss Rücksicht genommen werden auf die allgemeine äussere Gestalt des Grosshirns, dann müssen zweitens die besonderen Umgestaltungen der einzelnen grösseren Abschnitte besprochen werden, gleichsam in die gröberen Umrisse die feinere Ornamentur hineingetragen werden. Mit anderen Worten, der erste Theil der Aufgabe wird die Entwicklung der Lappen, der zweite jene der Furchen und Windungen zu behandeln haben.

a) Entwicklung der Grosshirnlappen.

Was zuerst die Hemisphären betrifft, so besitzen diese zwei Oberflächen und einen Umschlagsrand, den wir Mantelkante genannt haben. Die äussere convexe Oberfläche gleicht dem Segmente einer Kugel und geht unten vermittelst der Wurzel direct in den Bodentheil des secundären Vorderhirns (Taf. I, Fig. 6) über. Die innere, in der Mantelspalte gelegene Fläche der Hemisphäre ist wegen der Anheftung an das grosse Foramen Monroi nach unten defect, also einer sichelformigen Lamelle gleich, welche das Zwischenhirn in stark gekrümmten Bogen umgreift. Den hinteren, gegen das Zwischenhirn gewendeten Theil dieser Wand haben wir nach REICHERT die sichelformige Platte genannt.
Die Hemisphären besitzen anfangs also bloss eine äussere und eine innere glatte Oberfläche, eine sog. untere Fläche, welche im erwachsenen Gehirn in der vorderen Schädelgrube und am Kleinhirnzent zentriert liegt, ist nicht vorhanden. Das wird man sehr begreiflich finden, wenn man bedenkt, dass die Hemisphären jetzt von der Kleinhirnanlage durch die ganze Länge des Zwischen- und Mittelhirns geschieden sind, und ein Stirn- und Schläfenlappen nur in nuce, der Hinterhauptsflappen aber gar nicht vorhanden ist. Darum kann auch von einer Eintheilung in Lappen jetzt noch nicht recht die Rede sein, höchstens könnte man ein Stirn- und Schläfenende und einen dazwischen gelegenen Scheiteltäler unterscheiden.

Reif'sche Insel. Ringförmiger Lappen. Die Hemisphären wachsen dann zunächst nach vorne und hinten aus, wodurch die linsenförmige Gestalt der äusseren Fläche in eine bohnenförmige übergeht (Taf. II, Fig. 13 hms). Das Stirnende verlängert sich vor der embryonalen Schlussplatte nach vorne, das Schläfenende über das Zwischenhirn nach hinten, und zugleich sinkt der Wurzeltheil der Hemisphäre ein. Diese Vertiefung ist die Folge der Entwicklung der Grosshirnganglien, welche im Wachsen dem voraneilenden Mantel nicht folgen können. So entsteht am Wurzeltheil der Hemisphäre (am Hilus der Bohn) eine zum Bodentheil fast vertical abfallende seichte Depression, umfasst vom Mantel in einer halbzirkelförmigen Tour. Die flache Depression ist die Anlage der Sylvischen Grube, und jene Partie des secundären Vorderhirns, welche in der Grube liegt der sog. Centrallappen oder die Reif'sche Insel1). Die Insel liegt also vis-à-vis den Grosshirnganglien, resp. ist sie die äussere Fläche dieser Gebilde und liegt noch ganz unbedeckt vor. Der um den Centrallappen liegende peripherische Theil des Mantels kann zweckmassig ringförmiger Lappen genannt werden2). Eine Abgrenzung in secundäre Theile existirt am ringförmigen Lappen noch nicht, doch kann man schon jetzt ohne striete Grenzmarken abzustecken, einen Stirn-, Scheitel- und Schläfenlappen unterscheiden, vor, über und hinter dem Centrallappen. An der in der Mantelpalte befindlichen Fläche ist der Stirnlappen in Beziehung, eigentlich in unmittelbarem Anschluss an die embryonale Schlussplatte, der Scheitel- und Schläfenlappen (dessen sichelförmige Platte) an das Zwischenhirn.

Diese einfache Gestalt behalten die Hemisphären an der äusseren Oberfläche während ihrer fernen Vergrösserung ziemlich lange, beim Menschen vom zweiten bis zur Mitte des 3. Monates. An der inneren Fläche sind aber indessen wichtige Faltenbildungen eingetreten, deren in einem der früheren Kapitel (S. 111) theilweise schon Erwähnung geschehen ist (Ammonsfalte, seitliche Adergefl echt falte, Bogenfurche und Randbogen). Darauf werden wir noch zurückzukommen haben; bleiben wir zunächst bei der äusseren Oberfläche.

Riechläppchen. Wenn ich vorhin erwähnte, dass die äussere Oberfläche des Grosshirns zunächst ihre primitive Gestalt behält, so bezog sich das bloss auf die gröberen Um-

1) Lobus centralis Gratialet, Lobus caudicis Burdach, Lobus intermedius v. oportus Arnold.
2) Henle (o. c. S. 154) belegt mit diesem Namen im ausgebildeten Gehirn alle Lappen um die Insel, mit Inbegriff des Lobus occipitalis.
rissé, und muss ich nunmehr diese Angabe dahin berichten, dass einstweilen am Bodentheil eine Neubildung hinzutreten ist, ich meine den Riechappeln (lobus olfactorius) 1). Dieses wichtige Gebilde verdient unsere volle Aufmerksamkeit, darum soll dessen Entwicklung zunächst erledigt werden.

Während das vordere Ende der linsenförmigen Hemisphäre zur Bildung des Stirnlappens auswächst, und den Bodentheil des secundären Vorderhirns nach vorne überflügelt, entsendet das Vorderende des letzteren unter dem Stirnlappen und mit diesem in gleichem Verhältniss vorwachsend, einen kurzen kolbenförmigen Hohlfortsatz, der zum Riechappeln wird (Taf. II, Fig. 13 ojf). Der Übergang der Höhle des Fortsatzes zum Seitenventrikel liegt gerade vor dem Ganglienhügel am Boden des Vorderhorns. Der Riechappeln ist also ein wahrer Hirntheil, und verdient den Namen eines »Lappens« mit vollstem Recht. Von besonderem Interesse ist, dass dieser Fortsatz eine Hohlausstilpung des Stammtheiles des secundären Vorderhirns ist, sein Uebergangstheil also in nächster Nähe des Centrallappens und der Grosshirnganglien liegt. Fügen wir nun sogleich hinzu, dass bei der alshald erfolgenden Vergrösserung der Hemisphären der unter der offenen Sylvischen Grube gelegene Stammtheil des secundären Vorderhirns im Wachsthum bedeutend zurückbleibt, und ganz zur vorderen und seitlichen Siebsubstanz (substantia perforata ant. et lateralis) wird, so ist damit die nahe Lagebeziehung des Riechlappenursprungs zu jenen Substanzen und zum unteren Theil der Sylvischen Furche erklärt.

1) Rhinencephalon Huxley, Tractus olfactorius autorum. 2) Fasciculus uniforinis Rohl.
Hakenwindung). Der innere Zug behält seine Lage stets bei, und zieht vor der grauen Endplatte und vor dem Balkenschnabel zum Anfang des Zwischenwulstes (gyrus fornicatus).

Ausser den zwei vorgetragenen besitzt der Riechlappen noch eine dritte sog. mittlere Wurzel, deren Entwicklung aber äusserlich nicht verfolgt werden kann. Sie liegt zwischen beiden vorigen und zieht, in die Substantia perf. ant. sich einsenkend zum Kopf des Streifenhügels. — Der aus der vorderen Hirncommissur zum Riechlappen ziehenden Nervenfasern ist schon früher einmal Erwähnung gesehehen [S. 127].

Die Entwicklung des Riechlappens entscheidet unzweideutig, dass wir es mit einem Hirntheil (rhinencephalon Hexley) zu thun haben, der mit den spinalartigen Nerven des Hinter- und Nachhirns nicht in eine Kategorie gesetzt werden darf. Der Lobus olfactorius ist ein ähnlicher Anhang des secundären Vorderhirns, wie der Nervus opticus jener des Zwischenhirns, und die verschiedenen Schichten des Bulbus olfactorius sind den Retina-schichten homolog. Während aber der Sehnerv, anscheinend wenigstens\(^3\), ganz zu einer

2) Meynert (a. e. S. 719) meint, dass diese Fasern dann am Seitenrande des Balkens mit dem Mark des Zwischenwulstes als Stria obducta (nervus Lancisi) auf die Ammonswindung ziehen, an welcher sie die Substantia reticularis alba bilden.

3) Die histologische Structur spricht aber auch später noch für den Ursprung aus dem Centralnerven-

Riechlappe der Thiere. Aus der vergleichenden Anatomie ist über die Riechlappe zu erwarten, dass diese bei niederen Wirbeltieren in gewaltiger Grösse vor dem secundären Vorderhirn liegen. Bei manchen Fischen (Selachiern) sind sie sogar eine ziemliche Strecke von dem Vorderhirn entfernt und verschmelzen mit einander (32. S. 31).

1) Bei Säugethieren und Selachiern durch mehrere Löcher, dagegen in einem Stamm bei vielen Fischen, Amphibien, Reptilien und Vögeln.
4) S. darüber das Nähere bei Reissner (Bau des centralen Nervensystems der umschwänzten Ba-
Beim Vogel ist der Lobus olfactorius verhältnismässig klein und am vorderen Ende des Hemisphärenhirns gelegen. Davon zieht ein ganz deutlich sichtbarer weisser Strang zum hinteren Ende der Hemisphäre). Er entspricht der äusseren Riechwindung der Säugethiere.

b) Vergängliche Furchen am Grosshirn.

Vergängliche Furchen. Bei den nun erfolgenden weiteren Veränderungen des Grosshirns werden wir uns fast ausschliesslich an menschliche Früchte halten, weil die Entwicklung der Furchen und Windungen bei diesen zur höchsten Vollkommenheit kommt und bis jetzt am besten bekannt ist. Etwas über die Wirbelthiere wird dann in einer Anmerkung nachgetragen werden.

Es entstehen nämlich in der Mitte des 3. Monates an der convexen Fläche des

1) Stieda o. e. Bd. XIX. S. 47.
Ringlappens radiär um die offene Sylvische Grube 6—7 Furchen, theils länger und bis an die werdende Icelherrenreichend, theils kürzer, blos auf den peripheren Theil des Mantels beschränkt (Taf. II, Fig. 16). Die Furchen sind bedingt durch Falten des dünnen Hemisphärenmantels, und es unterliegt wohl keinem Zweifel, dass ihre Entstehung von einem Missverhältniss zwischen dem stark auswachsenden Mantel und dem Zurückbleiben der Schädelkapsel bedingt ist. Die radiäre Anordnung auf dem verdickten Centrallappen, welch letzterer gleichsam eine Spannung auf den Ringlappens ausübt, spricht wohl für diese Auffassung. Ähnliche Furchen sieht man zu dieser Zeit an der in der Mantelsohalte gelegenen Hemisphäreninnenwand, und zwar auch in radiärer Anordnung auf der Bogenfurche, ihre Bildung hängt also mit denselben mechanischen Einwirkungen zusammen, wie die Furchen an der äusseren Fläche. — Alle diese Furchen sind aber nur temporär, denn im Anfang des 4. Monates sind die Missverhältnisse zwischen Gehirn und Schädelhöhle ausgeglichen und die äussere Oberfläche des Gehirns wieder ganz glatt geworden (Taf. II, Fig. 19). Nun beginnt erst die Bildung der bleibenden Furchen und Windungen, mit Ausnahme jener, welche an der inneren Oberfläche schon vor den vergänglichen Furchen vorhanden waren.

Literaturangaben. Der erste, der die vergänglichen Furchen erkannte, war J. Fr. MECKEL (31. S. 400), der der Meinung war, dass die zuerst gebildeten Furchen verwachsen, worauf dann neue entstehen, was zunächst von P. BALOGH (2. S. 81) gelehret wurde. TIEDEMANN (31. S. 441 u. 153) und BISCHOFF (4. S. 476) meinten, dass die primitiven Windungen in die bleibenden übergehen und die Furchen überhaupt aus Faltungen der dünnen Hemisphärenblase gebildet werden.

c) Bleibende Furchen und Windungen.

1) An der Hemisphäreninnenwand. Es würde schwer und mit vielen Unterbrechungen verknüpft sein, wollte man die Entwicklung der Furchen und Windungen an der äusseren und inneren Fläche der Hemisphären in chronologischer Reihenfolge zugleich verfolgen. Es ist für das leichtere Verständniss vorteilhafter jede Fläche für sich zu besprechen, darum beginne ich mit der inneren Oberfläche zuerst, weil dort bleibende Furchen schon vor den vergänglichen entstanden sind.

Ammonsfurche, Randbogen. Bei der Beschreibung der Höhnenfläche des Grosshirns habe ich erwähnt (S. 141), dass an der Innenwand sehr früh die Ammonsfläche, und, dieser entsprechen, die Ammonsfurche oder sog. Bogenfurche (ARNOLD, fissura hippocampi HUXLEY) entsteht. Die Falte wird mit der Vergrösserung der Hemisphären zu einem in die Ventrikellohle vorragenden Wulst, der die Anlage des Ammons horns (pes hippocampi major) ist. — Bogenfurche und Ammonshornwulst erstrecken sich nach der Verengung des Monro'schen Loches, also schon vom 3. Monate an, fast auf die ganze Innenwand der Hemisphäre (Taf. II, Fig. 20 u. 22). Vorne zieht die Bogenfurche (umm) nach einem Stümmigen
Umschwung gegen die Spitze des Stirnlappens, unten zum Ende des Schläfenlappens, ohne diese Punkte ganz zu erreichen. Die von der Bogenfurche abgegrenzte Windung an der Hemisphäreninnenwand wird Randbogen (F. Schmidt) genannt. Der Randbogen ist also der untere Schenkel des Ammonswulstes.

Fissura calcarina u. S. parieto-occipitalis. Nächst der Bogenfurche entsteht mit dem Auswachsen des Occipitallappens eine kurze Zweigfurche vom hinteren Theil der Bogenfurche, welche die Richtung zur Spitze des Hinterhauptlappens einhält, ebenfalls ohne dieselbe zu erreichen (Taf. II, Fig. 22 e v e). Auch diese Furche verdankt ihre Entstehung einer in das Hinterhorn vorragenden Falte (Taf. II, Fig. 20 e v e), welche später zur Vogelklause (calcar avis) wird, darum die Furche zutreffend den Namen Fissura calcarina (Hexle) trägt. Sie ist schon am Ende des 3. Monates ausgebildet und entsteht fast gleichzeitig mit den vergänglichen Furchen. — Am Anfang des 4. Monates gesellt sich dann zur Vogelurche eine neue Furche, der Sulcus parieto-occipitalis (Ecker). Von einem gemeinsamen Schenkel mit der Vogelurche ausgehend, zweigt sie sich nach oben ab, und haben dann beide Furchen die Form eines horizontal umgelegten - (Taf. III, Fig. 24 u. 25 p o e u. e v e). Der von den zwei, nach hinten divergirenden Schenkeln des Y umfasste Raum (ens) wird Zwicke (cuneus Burda) genannt. — Anfangs sind beide Furchen ganz kurz, später (6.—7. Monat) verlängert sich die Fissura parieto-occipitalis bis zum freien Rand des Mantels hinauf und schneidet dort tief, aber bei verschiedenen Individuen variirend weit, ein (Taf. III, Figg. 27 u. 28 p o e).

Totalfurchen. Die beschriebenen drei Furchen, welche wegen ihres frühzeitigen Auftretens **Hauptfurchen** oder Primärfurchen (Rechert) genannt werden, unterscheiden sich wesentlich von allen anderen Furchen des Gehirns. Den übrigen Furchen entsprechen nämlich keine Hervorragungen in den Seitenventrikeln, sie entstehen nicht aus Falten, wie die Primärfurchen, sodann durch locale Erhebung der angrenzenden Hirrinde. Man kann

1) Nach His (24. S. 116) entspricht der F. parieto-occipitalis die Convexität des Hinterhorns. Das bedarf insofern einer Berichtigung, als Hexle (Nervenlehre, S. 148) unter Bulbus cornu posterioris jene Hervorragung im Hinterhorn versteht, welche durch die vom Balkensplenum gegen die hintere Spitze der Hemisphäre umhüllenden Faserzüge der sog. Zange (forceps) gebildet wird. Der dadurch bedingte Bulbus bildet die innere Wand, die Vogelklause (calcar avis) den Boden des Hinterhorns (Hexle [o. e.] Fig. 88 Bb. S. 146).
die Primärfurche auf Hsu's Vorschlag (24. S. 116) passend Tottalurche, und die ihnen entsprechenden Hervorragungen Tottalfalten nennen. Die Hemisphärenwand dehnt sich schneller aus, als die Schädelkapsel, darum fällt sie sich gegen den Ort des geringeren Widerstandes, also gegen den Seitenventrikel; entsprechend der Hervorragung des Ganglien-hügels nimmt die Falte einen bogenförmigen Verlauf an, und so entsteht die Ammons falte mit der Bogenfurche. Die beiden anderen Furchen fassen das Ende des Hinterhauptlappens wie eine Gabel zwischen sich, sie entstehen erst mit der Ausbildung des Hinterhauptlappens, der sich zwischen Schlafen- und Scheitellappen gleichsam hineinklettert, und zur Bildung von divergirenden Zweigfalten Veranlassung giebt.

Randbogen. Eine detaillierte Beschreibung erfordern zunächst die Verhältnisse des Randbogens, von welchem wir aus dem vorangehenden Kapitel (S. 123 u. 126) schon wissen, dass er bei der Gewölbe- und Balkenbildung beteiligt ist.

Der Randbogen ist eine stark gebogene Windung, die über den verwachsenen Septa pellucida beginnt und bogenförmig die Grosshirnganglien umkreist (Taf. II, Fig. 22 a m m). Seine Begrenzung bildet: nach aussen die Bogenfurche, nach innen der zugeschärft Ubergangs-saum zur oberen Epithellage der seitlichen Adergfleechte (der angenommene Zugang zum Unterhorn des Seitenventrikels). Der innere (an das Epithel grenzende) Saum des Randbogens differenziert sich dann im Anfang des 4. Monates zu den Längsfasern des Gewölbes (Körper, Schweif und Fimbria), wie das aus dem Vorangehenden (S. 124 u. 129) schon bekannt ist. Der zwischen dem Gewölbe und der Bogenfurche gelegene Theil des Randbogens bleibt vor der Hand unverändert und umkreist halbzirkelförmig den Sehügel, unten an der Spitze des Schläfenlappens nach einem scharf geknickten Umschlag in den unteren Begrenzungsrand (wesendige Ammons windung) des Schläfenlappens übergelend (Taf. II, Fig. 22). Die Umschlagsstelle wird später zur Hakenwindung (gurus unci natus u. unicus hippocampi), der unter der Bogenfurche gelegene Theil des Schläfenlappens wird zur Ammons windung (gurus hippocampi), und fügen wir sogleich hinzu, dass aus dem, nach der Differenzierung der Gewölbe fasern übrig gebliebenen Theil des Randbogens die gezo hnte Leiste (fascia dentata) wird.

Gyrus dentatus. Taenia tecta. Der Randbogen verwächst im 4. Monat mit jenem der anderen Seite von vorne nach hinten in einer Ausdehnung, welche der Balkenlänge entspricht, und es entstehen darin die Querfasern des Corpus callosum (s. S. 126). Dadurch wurde der Randbogen bedeutend kürzer, er ist mit dem hinteren Ende des Balkens verbunden und entspringt scheinbar vom Balkenwulst (Taf. III, Fig. 25). — In der ersten Hälfte des 5. Monates entstehen am freigebliebenen Theil des Randbogens quere Kerben, wodurch die Gestalt der gezahnten Leiste (d n t) kenntlich wird. Die gezähnte Leiste ist im Embryo als Windung deutlich erkennbar; sie verdient also mit Recht den Namen Gyr us dentatus (H E X L E Y). Die Windung erstreckt sich vom hinteren Ende des Balkens bis an den Uncus hippocampi; sie entstand aus dem nicht verwachsenen hinteren Theile des Randbogens. Auf ihr liegt die Fimbria des Gewölbes (f m b), unter und hinter ihr die Bogenfurche (l u c).

Das Ammonshorn mit seinen Adnexen ist im erwachsenen Gehirn ein Complex von eigenthümlichen windungswählichen Zügen, dessen Verständniss nur durch die Entwicklungsgeschichte erlangt werden kann. Der Ammonshornwulst mit den Digitationen im Seitenventrikel ist die vorgestülpte Stelle der Ammonsfaule, die gezähnte Leiste mit der Fimbria sind Windungen an der äusseren (der Mantelspalte zugekehrten) Fläche des inneren Faltenschenkels, der Gyrus hippocampi eine Windung am äusseren Falten-

1) Nach manchen Autoren (Meinert o. c. S. 719) ist es die Fortsetzung der inneren Riechwindung.
2) Nach Henle (Nervenlehre. S. 168) und Aert (o. c. S. 864) entsteht die Fascia dentata platt auf der oberen Fläche des Balkenwulstes, nach Riechert (44. Taf. VI, Fig. 13) an dessen unterer Fläche. — Ich sah es wie Henle, doch wäre es möglich, dass hier Variationen vorkommen, was mit der Entwicklungsort leicht in Einklang gebracht werden kann.
schenkel. Nur die gezahnte Leiste bleibt grau, die Oberfläche des Ammonshorns ist von einer weissen Marksubstanz belegt (alveus), dessen Fasern zur Bildung der Fimbria zusammengetreten; auch das Subiculum cornu Ammonis ist von der Ausstrahlung der Taenia tecta weiss, wodurch sie eine netzartige Zeichnung erhält (substantia reticularis alba).

2) Furchen und Windungen an der äusseren Oberfläche. Die Furchen und Windungen an der äusseren Oberfläche sind zahlreicher und mannigfaltiger, als jene an der inneren Fläche. Eine von diesen und zwar die wichtigste, hat eine von den übrigen grundverschiedene Entwicklungsart, ich meine die Sylvische Furch. Ihre Bildung hängt mit der Entwicklung der Stammganglien zusammen, ist also der Zeit nach die am früheste angelegte Furche. Wir verfolgen deren Bildung vom Abfang an sogleich bis in die definitive Form.

Sylvische Furche. Am Ende des zweiten Monates hat die äussere Oberfläche der Hemisphäre beiläufig eine bohnenförmige Gestalt, mit nach unten gewendetem Hilus (Taf. II, Fig. 13 hms). Dort liegt eine flache rundliche Grube, nach unten in den Stammtheil des

1) Gyrus callosus Huxley, Fornix periphericus Arnold.

2) So heisst ein Theil der Hemisphäreninnenwand zwischen S. parieto-occipitalis und dem aufsteigenden Ast des S. calloso-marginalis.
secundären Vorderhirns, nach oben und aussen allmälig in den vorgewölbten ringförmigen Lappen übergehend; der flachen Depression entspricht im Seitenventrikel die Hervorragung der Stammganglien (s. S. 411). Während sich dann der Hemisphärenmantel im 3. Monat nach allen Richtungen ausbreitet und der ringförmige Lappen um die werdende Insel sich hervorwölbt, wird die Grube etwas tiefer. Man kann ihre Gestalt einem vertical gestellten Bogen vergleichen, mit vorderem und hinterem Schenkel und einem bogenförmigen Verbindungsrand (s. die Holzschnitte, deren Zahlen die Monate angeben). Nach unten ist die Depression begrenzt durch die äussere Riechwindung, resp. geht sie hier verbreitet in den Stammtheil des secundären Vorderhirns über. — Die verticale Lage der Grube geht in der ersten Hälfte des 4. Monates in eine schräg nach rückwärts gewendete über, was wohl mit der stärkeren Ausbreitung der Hemisphäre nach hinten zusammenhängen mag. Zugleich ist die Grube etwas höher und verhältnissmässig schmäler geworden (Taf. II, Fig. 19 stv). Vor dem vorderen Schenkel beginnt der Stirnlappen, hinter dem hinteren Schenkel der Schläfenlappen sich hervorzuwölben. — Im Anfang des 5. Monates ist die Grube noch schräger gestellt und der vordere Schenkel in einem stumpfen Winkel gebrochen (Taf. III, Fig. 23). Der Winkel entstand dadurch, dass der Stirnlappen von oben die Grube zu überwölben beginnt, wodurch die Anlage des Klappdeckels (operculum Burdach) erscheint. Aus dem winklig geknickten Theil des vorderen Schenkels wird in der Folge der vordere oder aufsteigende Ast (ramus ant. s. ascendens), aus dem dahinter gelegenen Theil der hintere oder horizontale Ast (ramus post. s. horizontalis), aus dem untersten Theil die gemeinsame Wurzel der Sylvischen Furche. Das wird sogleich deutlicher, wenn man Gehirne aus den späteren Monaten in Augenschein nimmt. — Im 6. Monat ist die winklig geknickte Stelle des vorderen Schenkels deutlicher, der bogenförmige Verbindungstheil oben spitz, unten der Uebergangstheil zur Gehirnbasis schmäler geworden. Der Centrallappen besitzt nunmehr durch die Vorwölbung des Klappdeckels und des Schläfenlappens markirtere Grenzen, ist aber noch ganz offen, unten geht er direct in den Bodentheil des secundären Vorderhirns, der einstweilen gänzlich zur Substantia perforata lateralis wurde, über. — Im 7. Monat (Taf. III, Fig. 26) wölbt sich der Klappdeckel (opc) bogenförmig gegen den hinteren Schenkel (rpm) vor und verengt den oberen Theil der Grube zum hinteren Ast der Sylvischen Furche. Der vordere Ast (die geknickte Stelle des vorderen Schenkels) ist aber noch immer sehr kurz (rma), die Insel (ins) ganz offen. — Im 8. Monat sind vorderer und hinterer Ast und der Wurzeltheil geschlossen, die Insel aber in einer dreieckigen Ausbreitung noch unbedeckt. — Diese unbedeckte Stelle verengt sich dann im 9. Monat durch die von drei entgegengesetzten Richtungen sich vorwölbenden Schläfenlappen, Klappdeckel und Stirnlappen, und ist zu Ende des 9., oder spätestens zu Anfang des 10. Monates der Centrallappen ganz bedeckt. So wurde die Insel in die Tiefe der

Lappen. Im 6. Monat ist die Centralfurchen noch sehr seicht, im 7. wird sie tiefer (Taf. III, Fig. 26 efr), erreicht aber auch fernerhin nicht die Mantelkante und den hinteren Ast der Sylvischen Furchen.

1) GRATIOLLET behauptete, dass die Furchen der linken Hemisphäre früher zur Entwicklung kämen, als jene der rechten; — das ist nach ECKES (10) Untersuchung ein Beobachtungsfehler.

der vorderen Centralwindung parallel mit der Mantelspalte zum vorderen Ende des Stirnlappens, die untere Stirnfurche ist kürzer und umkreist den vorderen Ast der Sylvischen Spalte. — An der Orbitalfläche des Stirnlappens entstand zunächst eine, mit der Mantelspalte parallel verlaufende Furche, und davon nach aussen eine andere sternförmige Furche, welche Sulcus rectus (v. olfactorius, weil der Locus olfactorius darin liegt) und Sulcus orbitalis genannt werden. — Durch die zwei Stirnfurchen wurde der Stirnlappen in drei windungssähnliche Züge getrennt, welche als obere, mittlere und untere Stirnwindung (Urwundenungen Huseke) benannt werden. Zur oberen Stirnwindung (g. frontalis sup.) wird auch der über dem Sulcus calloso-marginalis gelegene Theil der Hemisphäreninnenfläche gerechnet; diese Windung zieht, die Mantelkante am Stirnlappen begrenzend, zum vorderen Ende des Locus frontalis und biegt hier, — aber nicht constant, — in den Gyrus rectus um. Die beiden anderen Stirnwindungen (g. frontalis med. et inf.) sind kürzer als die obere, beide biegen vorne auf die Orbitalfläche des Stirnlappens um1).

v. Mikulich, Entwicklung des Gehirns. 20
barem Anschluss an den über das Balkensplenium gelegenen ähnlich benannten Theil der Hemisphäreninnenwand.

An der äusseren Fläche des Schläfenlappens entstehen zwei, mit dem hinteren Ast der Sylvischen Spalte parallel verlaufende Furchen, die obere und mittlere Schläfenfurche (s. temporalis sup. et med.), erstere ist immer vorhanden, letztere aber inconstant und oft überbrückt. Es 3. Furche entsteht an der unteren Fläche des Schläfenlappens, die auch auf den Hinterhauptsappens übergreift und darum S. occipito-temporalis inf. genannt wird. Die Furche reicht oft weit nach vorne und umgreift den Gyrus hippocampi, sie ist tief und erzeugt den Vorsprung der Eminencia coll. Meckeli im Unterhorn, wird darum auch Fissura collateralis (Huxley) genannt. — Dem entsprechend hat die äussere Fläche des Schläfenlappens drei, die untere Fläche zwei Windungen. Jene an der äusseren Fläche heissen obere (g. temp. sup. v. inframarginalis), mittlere und untere Schlafenwindung (g. temp. med. et inf.), an der unteren Fläche Spindelwindung (lobulus fusiformis v. g. occip.-temp. lat.), und Zangenwindung (lobulus lingualis v. g. occip.-temp. med.), letztere liegt gleich im Anschluss an die Ammonswindung.

Die Furchen convergiren mehr weniger gegen die Spitz des Hinterhauptlappens, welche Stelle von Ecker Lobulus extremus genannt wird, und sind im Uebrigen von weniger regelmässigem Verlauf, wie die Furchen und Windungen der anderen Lappen. An der äußeren Fläche sind zwei Furchen zu erwähnen, erstens die Fortsetzung des S. interparietalis nach ruckwärts (s. occip. sup.), an dessen Ende sich abspaltet eine kurze Querfurche anlagert (s. occip. transv.), dann darunter der S. occip. longitud. inf. (s. sagittalis). — Dadurch kann man an der äußeren Fläche drei kurze Windungen unterscheiden. Die obere Hinterhauptswindung (g. occip. sup.) liegt im Anschluss an das obere Scheitelläppchen, die mittlere (g. occip. med.) unter dem Gyrus angularis, die untere (g. occip. inf. v. occip.-temp.) in der Fortsetzung der 3. Schlafenwindung. — An der inneren Fläche liegt bekanntlich die Fiss. parieto-occipitalis mit dem S. calcarinus, beide den Zwickel umfassend. Wo beide Furchen zusammenfließen, liegt in der Tiefe verborgen eine kleine Uebergangswindung vom Gyrus fornicatorius zum Zwickel (g. cunei Ecker). Der S. calcarinus erreicht den freien Mantelrand nicht, dort zieht an der Innenfläche vom Zwickel ein windungsählicher Zug, Gyrus descendens genannt, nach unten. — Der unteren Fläche des Occipitallappens gehören auch die schon beim Schlafenlappen erwähnten Lobulus fusiformis und linguatus an.

1) Ueber Gyr. transiti s. das Nähere bei GLASON, Om.menniskolyernas vindlar och färor. Upsala Universitets Arsskrift. 1868. (Canstatt's Jahresberichte. 1870.).

nicht einmal eine der Sylvischen Grube entsprechende Depression zeigt sich. Das hängt bei Vogeln mit der starken Entwicklung des Streifenbügels und den seitwärts gedrängten Lobii optici zusammen, welche eine Ausbreitung des hinteren Lappens um die Hirnschenkel herum verhindern. — Die erste Andeutung der Sylvischen Grube kommt bei den niedriger stehenden Säugethieren (z. B. Kaninchen) zum Vorschein, wo der hintere Theil der Hemisphere sich um den Streifenkörper zu krümmen beginnt, die Grube ist aber noch ganz offen, und nur bei höheren Ordnungen wird sie allmählich zugedeckt, was vollständig erst beim Menschen erfolgt. — Bei niederen Säugethieren erstrecken sich die Hemisphere relativ weiter nach vorne als nach hinten, so ist z. B. beim Kaninchen der hintere Theil des Vierbügels mit dem Kleinhirn und der Lobus olfactorius noch ganz unbedeckt, während beim Schwein die Bedeckung theilweise, bei höheren Affen vollständig erfolgt.

Auf die näheren Verhältnisse der Furchen und Windungsbildung bei Säugethiere einzugehen ist hier nicht der Ort, und wird darum für jene, welche über die Furchen und Windungen der Thiere eine Belehrung wünschen, auf die bezügliche Literatur verwiesen 2).

F. Schmidt (49. S. 55) belegte die durch die Bogenfurchen abgegrenzte Windung mit dem Namen des Randhagens. Diese Nomenklatur wurde dann auch von Kölliker (26. S. 235) angenommen. Von Schmidt wird auch eine Furchen an der Hemisphärenrinnewand beschrieben und abgebildet (Fig. 5/1), welche entgegengesetzt, wie die Ammonsforche gerichtet ist, letztere mit ihrem Mitteltheil berührt, und deren hinterer Theil zur Anlage der Vogelfurchen dienen soll. — Diese Furchen existiert, so viel ich sah, nicht.

Hls (31. S. 110—117) hat einige allgemeine Gesichtspunkte zur Furchen- und Windungslehre beigetragen. Die Unterscheidung zwischen Total- und Rindenfurchen, die Annahme mechanischer Einwirkungen auf die Bildung der Totalfurchen, und der Mangel von äusseren Kräften bei der Entstehung der

Rindenfurchen stammt von Hls. — Eine kleine Berichtigung bedarf die Annahme, dass die Innenfläche der Hemisphäre zu keiner Zeit glatt, sondern sogleich von einer bogenförmigen Furchen durchzogen ist. S. 112). Die Bogenfurchen tritt zwar sehr früh auf, aber gleich nach der Abschlußung der Hemisphäre ist deren Innenwand eine kurze Zeit hindurch glatt. Auch kommt es bei gut erhalteten Embryonen nicht vor, dass die Bogenfurchen zum freien Band des Mantels hinaufziehen, wie bei Hls in Fig. 97. Bf. (S. 104).

<table>
<thead>
<tr>
<th>Alter des Embryo in Monaten</th>
<th>4 1/2 *</th>
<th>2 1/4 *</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge des Embryo in Millimeter</td>
<td>20 *</td>
<td>20 *</td>
<td>85</td>
<td>449</td>
<td>245,9</td>
<td>345,7</td>
<td>359,5</td>
<td>415</td>
<td>435</td>
</tr>
<tr>
<td></td>
<td>(60—110)</td>
<td>(60—110)</td>
<td>(140—165)</td>
<td>(190—285)</td>
<td>(60—370)</td>
<td>(60—380)</td>
<td>(60—410)</td>
<td>(420—450)</td>
<td></td>
</tr>
<tr>
<td>Grösster Sagittal-</td>
<td>6 *</td>
<td>9 *</td>
<td>25</td>
<td>35</td>
<td>54</td>
<td>67,5</td>
<td>74,5</td>
<td>81,5</td>
<td>86</td>
</tr>
<tr>
<td>durchmesser der Hemisphären in Mm.</td>
<td></td>
<td></td>
<td>(19—26)</td>
<td>(31—45)</td>
<td>(45—57)</td>
<td>(57—76)</td>
<td>(66—83)</td>
<td>(77—86)</td>
<td></td>
</tr>
<tr>
<td>Grösster Transversal-</td>
<td>5 *</td>
<td>7 *</td>
<td>47</td>
<td>31</td>
<td>32 *</td>
<td>51,6</td>
<td>60 *</td>
<td>73</td>
<td>82</td>
</tr>
<tr>
<td>durchmesser der Hemisphären in Mm.</td>
<td></td>
<td></td>
<td>(14—20)</td>
<td>(35—37)</td>
<td>(42—55)</td>
<td>(70—76)</td>
<td>(70—76)</td>
<td>(70—76)</td>
<td></td>
</tr>
</tbody>
</table>

(Die mit * bezeichneten Zahlen habe ich hinzugefügt, weil die betreffenden Messungen bei Ecker nicht angegeben sind.)

Rückblick. Die Hemisphäre hat anfangs eine linsenförmige, dann bohnenförmige Gestalt, in deren Hilsus der mit den Grosshirnganglien zusammenhängende Centrallappen liegt.

Während das vordere Ende der Hemisphäre zur Bildung des Stirnlapps nach vorne auswächst, entsendet gleichzeitig der Stammteil des secundären Vorderhirns den kolbenförmigen Riechappen nach vorne. Der Stammteil bleibt dann im Wachsthum zurück und

Im 6. Monat entsteht die Centralfurche und theilt die Hemisphere in einen vorderen und hinteren Theil. Im 7. u. 8. Monat werden die übrigen Furchen und Windungen an der äusseren Fläche gebildet, und zwar die Furchen zunächst als seichte Vertiefungen,
manchmal an mehreren Stellen zugleich erscheinend, welche bald der Länge nach zusammentriess. Im 9. Monat sind alle Hauptfurchen und Windungen ausgebildet, und da zu dieser Zeit die Nebenfurchen noch fehlen, so zieht ein Gehirn aus dem 9. Monat ein typisches Bild der Furchen und Windungen. — Im Ganzen genommen kann der Verlauf der Furchen und Windungen als bogenformig um die Sylvische Grube ziehend, angenommen werden, natürlich unterbrochen in der Mitte durch die Centrafurche und die Centralwindungen. Die bogenförmige Anordnung ist am Hinterhauptsflappen etwas gestört, was mit der nachträglichen Bildung dieses Lappens zusammenhängt. Einige der Furchen und Windungen scheinen mit der Entwicklung der stärkeren Arterien zusammenzuhängen, wenigstens ist das für die Fossa Sylvii (art. fossae S.), für die Fissura parieto-occipitalis (art. profunda cer.) und für die Ammonsfurche (art. corp. call.) wahrscheinlich.

ANGABE.

KAPITEL X.

Über das Epithel der Gehirnhöhlen.

Hirnhöhlen. Wir haben aus entwicklungsgeschichtlichen Gründen zweierlei Hirnhöhlen unterschieden, primär vorgebildete und eine secundär dazu gekommene (s. S. 131). Die aus den embryonalen Hirnläschen hervorgegangenen Höhlen (ventriculi lat., ventr. medius, aquaeductus Sylvii, ventr. quartus) gehören der ersteren, der fünfte Hirnventrikel (ventr. septi pellucidi) der zweiten Art an. Der wesentliche Unterschied zwischen den beiden Arten von Hirnhöhlen ist der, dass der fünfte Ventrikel mit Endothel, die übrigen Hirnventrikel mit wahren Epithel bedeckt sind. Von diesem Epithel muss jetzt noch Einiges, was bisher nicht besprochen werden konnte, nachgeholt werden.

Epithel der Gehirnhöhlen. Die gesamte Wand der embryonalen Hirnläschen stammt nach unserem Dafürhalten aus der Grundschicht des Epiblasts (s. S. 12). Es haben also die innersten, an die Hohlenfläche grenzenden Zellen, aus welchen später das Epithel der Gehirnventrikel wird, dieselbe Anlage, wie die nervösen Bestandtheile des Centralnervensystems. Der Unterschied fällt anfangs nicht so sehr in die Augen, denn die Anlage des Epithels und der nervösen Bestandtheile ist ganz gleich, beide bestehen aus strahlenförmig geordneten säulchenartigen Zellen mit ovalen scharfen Kernen, nur liegen die Zellen an der Höhlenwand enger an einander, und erscheinen in Tinctionspräparaten als eine etwas dunklere Zone. Die schlanken Ausläufer der Zellen reichen bis an die äussere oder innere Oberfläche der Gehirnwand heran, das Epithel ist also nur scheinbar mehrschichtig, eigentlich